15-251

Great Theoretical Ideas in Computer Science

Ancient Wisdom: On Raising A Number To A Power

Lecture 13 (October 9, 2007)

Egyptian Multiplication

The Egyptians used decimal numbers but multiplied and divided in binary

a x b By Repeated Doubling

b has n-bit representation: $b_{n-1}b_{n-2}...b_1b_0$

Starting with a,

repeatedly double largest number so far

to obtain: a, 2a, 4a,, 2ⁿ⁻¹a

Sum together all the 2^k a where $b_k = 1$

$$b = b_0 2^0 + b_1 2^1 + b_2 2^2 + \dots + b_{n-1} 2^{n-1}$$

ab =
$$b_0 2^0 a + b_1 2^1 a + b_2 2^2 a + ... + b_{n-1} 2^{n-1} a$$

 2^k a is in the sum if and only if $b_k = 1$

They used repeated halving to do base conversion!

Egyptian Base Conversion

Output stream will print right to left

```
Input X;
repeat {
    if (X is even)
        then print 0;
    else
        {X := X-1; print 1;}
    X := X/2;
} until X=0;
```

Sometimes the Egyptians combined the base conversion by halving and multiplication by doubling into a single algorithm

70 x 13 Rhind Papyrus [1650 BC]

		_	_		
Doubling	Halving	Odd?	Running Total		
70	13	*	70		
140	6				
280	3	*	350		
560	1	*	910		
Binary for 13 is $1101 = 2^3 + 2^2 + 2^0$ $70*13 = 70*2^3 + 70*2^2 + 70*2^0$					

30 x 5					
Doubling 5	Halving 30	Odd?	Running Total		
10	15	*	10		
20	7	*	30		
40	3	*	70		
80	1	*	150		

184 / 17 Rhind Papyrus [1650 BC]

Doubling	Powers of 2	Check
17	1	
34	2	*
68	4	
136	8	*

184 = 17*8 + 17*2 + 14 184/17 = 10 with remainder 14

b:=a*a
b:=b*a
b:=a*a
b:=b*b
b:=b*b

This method costs only 3
multiplications. The
savings are significant if
b:=a*a
b:=a*a
b:=b*b

Powering By Repeated Multiplication

Input: a,n

Output: Sequence starting with a, ending with aⁿ, such that each entry other than the first is the product of two previous entries

Example

Input: a,5

Output: a, a², a³, a⁴, a⁵

or

Output: a, a², a³, a⁵

or

Output: a, a², a⁴, a⁵

Given a constant n, how do we implement b:=aⁿ with the fewest number of multiplications?

Definition of M(n)

M(n) = Minimum number of multiplications required to produce aⁿ from a by repeated multiplication What is M(n)? Can we calculate it exactly? Can we approximate it?

Very Small Examples

What is M(1)?

$$M(1) = 0$$
 [a]

What is M(0)?

Not clear how to define M(0)

What is M(2)?

$$M(2) = 1$$
 [a,a²]

$$M(8) = ?$$

a, a², a⁴, a⁸ is one way to make a⁸ in 3 multiplications

What does this tell us about the value of M(8)?

$$\textbf{M(8)} \leq \textbf{3} \text{ }_{\textbf{Upper Bound}}$$

$$? \le M(8) \le 3$$

$3 \le M(8)$ by exhaustive search

There are only two sequences with 2 multiplications. Neither of them make 8:

 a, a^2, a^3 and a, a^2, a^4

Addition Chains

M(n) = Number of stages required to make n, where we start at 1 and in each stage we add two previously constructed numbers

Examples

Addition Chain for 8: 1 2 3 5 8

Minimal Addition Chain for 8: 1 2 4 8

Addition Chains Are a Simpler Way To Represent The Original Problem

Representation: Understand the relationship between different represen- tations of the saide adea			
1	\bigcirc		
2	00		
3	000		

Addition Chains For 30

28 30 16 24 5 10 20 30 3 5 10 15 30 8 10 20 30

Binary Representation

Let $\mathbf{B}_{\mathbf{n}}$ be the number of 1s in the binary representation of \mathbf{n}

E.g.: $B_5 = 2$ since $5 = (101)_2$

Proposition: $B_n \le \lfloor \log_2(n) \rfloor + 1$ (It is at most the number of bits in the binary representation of n)

Binary Method

(Repeated Doubling Method)

Phase I (Repeated Doubling)

For $\lfloor \log_2(n) \rfloor$ stages: Add largest so far to itself (1, 2, 4, 8, 16, ...)

Phase II (Make n from bits and pieces)
Expand n in binary to see how n is the sum of B_n powers of 2. Use B_n -1 stages to make n from the powers of 2 created in phase I

Total cost: $\lfloor \log_2 n \rfloor + B_n - 1$

Binary Method

Applied To 30

Phase I

1, 2, 4, 8, 16

Cost: 4 additions

Phase II

 $30 = (11110)_2$

2 + 4 = 6

6 + 8 = 14

14 + 16 = 30

Cost: 3 additions

Rhind Papyrus [1650 BC]

What is 30 x 5?

5 2 10 20 Start at 5 and 4 perform same Addition 40 8 additions as chain for 30 16 80 chain for 30 24 120 28 140 30 150

Repeated doubling is the same as the Egyptian binary multiplication

Rhind Papyrus [1650 BC]

Actually used faster chain for 30*5

The Egyptian Connection

A shortest addition chain for n gives a shortest method for the Egyptian approach to multiplying by the number n

The fastest scribes would seek to know $\mathbf{M}(\mathbf{n})$ for commonly arising values of \mathbf{n}

A Lower Bound Idea

You can't make any number bigger than 2ⁿ in n steps

1 2 4 8 16 32 64 . . .

Let S_k be the statement that no k stage addition chain contains a number greater than 2^k

Base case: k=0. S₀ is true since no chain can exceed 2⁰ after 0 stages

$$\forall k \geqslant 0, S_k \Rightarrow S_{k+1}$$

At stage k+1 we add two numbers from the previous stage

From S_k we know that they both are bounded by 2^k

Hence, their sum is bounded by 2^{k+1}. No number greater than 2^{k+1} can be present by stage k+1

Change Of Variable

All numbers obtainable in m stages are bounded by 2^m . Let $m = \log_2(n)$

Thus, all numbers obtainable in log₂(n) stages are bounded by n

$$M(n) \ge \lceil \log_2 n \rceil$$

Theorem: 2ⁱ is the largest number that can be made in i stages, and can only be made by repeated doubling

Proof by Induction:

Base i = 0 is clear

To make anything as big as 2ⁱ requires having some X as big as 2ⁱ⁻¹ in i-1 stages

By I.H., we must have all the powers of 2 up to 2^{i-1} at stage i-1. Hence, we can only double 2^{i-1} at stage i

5 < M(30)

Suppose that M(30)=5

At the last stage, we added two numbers x_1 and x_2 to get 30

Without loss of generality (WLOG), we assume that $x_1 \ge x_2$

Thus, $x_1 \ge 15$

By doubling bound, $x_1 \le 16$

But $x_1 \ne 16$ since there is only one way to make 16 in 4 stages and it does not make 14 along the way. Thus, $x_1 = 15$ and M(15)=4

Suppose M(15) = 4

At stage 3, a number bigger than 7.5, but not more than 8 must have existed

There is only one sequence that gets 8 in 3 additions: 1 2 4 8

That sequence does not make 7 along the way and hence there is nothing to add to 8 to make 15 at the next stage

Thus, M(15) > 4 CONTRADICTION

Factoring Bound

 $M(a \times b) \leq M(a) + M(b)$

Proof:

Construct a in M(a) additions

Using a as a unit follow a construction method for b using M(b) additions. In other words, each time the construction of b refers to a number y, use the number ay instead

Example

 $45 = 5 \times 9$

M(5)=3 [1 2 4 5]

M(9)=4 [1 2 4 8 9] $M(45) \le 3+4$ [1 2 4 5 10 20 40 45]

Corollary (Using Induction)

 $M(a_1a_2a_3...a_n) \le M(a_1)+M(a_2)+...+M(a_n)$

Proof:

For n = 1 the bound clearly holds

Assume it has been shown for up to n-1

Now apply previous theorem using

A = $a_1 a_2 a_3 ... a_{n-1}$ and b = a_n to obtain: $M(a_1 a_2 a_3 ... a_n) \le M(a_1 a_2 a_3 ... a_{n-1}) + M(a_n)$

By inductive assumption,

 $M(a_1a_2a_3...a_{n-1}) \le M(a_1) + M(a_2) + ... + M(a_{n-1})$

More Corollaries

Corollary: $M(a^k) \le kM(a)$

Corollary: $M(p_1^{\alpha_1} p_2^{\alpha_2} ... p_n^{\alpha_n}) \le \alpha_1 M(p_1) + \alpha_2 M(p_2) + ... + \alpha_n M(p_n)$

Does equality hold for $M(a \times b) \le M(a) + M(b)$

M(33) < M(3) + M(11)

M(3) = 2

[1 2 3]

M(11) = 5

[1 2 3 5 10 11]

M(3) + M(11) = 7

M(33) = 6

[1 2 4 8 16 32 33]

The conjecture of equality fails!

Conjecture: M(2n) = M(n) +1(A. Goulard)

A fastest way to an even number is to make half that number and then double it

Clearly, $M(2n) \le M(n) + 1$ but is this inequality tight?

Conjecture: M(2n) = M(n) + 1

(A. Goulard)

A fastest way to an even number is to make half that number and then double it

Proof given in 1895 E. de lonquieres in L'In

FALSE! M(191)=M(382)=11

Furthermore, there are infinitely many such examples

Open Problem

Is there an n such that: M(2n) < M(n)

Conjecture

Each stage might as well consist of adding the largest number so far to one of the other numbers

First Counter-example: 12,509 [1 2 4 8 16 17 32 64 128 256 512 1024 1041 2082 4164 8328 8345 12509]

Open Problem

Prove or disprove the Scholz-Brauer Conjecture:

 $M(2^n\text{-}1) \le n\text{-}1 + B_n$

(The bound that follows from this lecture is too weak: $M(2^n-1) \le 2n-1$)

High Level Point

Don't underestimate "simple" problems. Some "simple" mysteries have endured for thousand of years

Here's What You Need to Know... **Egyptian Multiplication**

Raising To A Power Minimal Addition Chain Lower and Upper Bounds

Repeated doubling method