

Ancient Wisdom:

 On Raising A Number To A PowerLecture 13 (October 9, 2007)

Egyptian Multiplication

The Egyptians used decimal numbers but multiplied and divided in binary

a x b By Repeated Doubling

b has n-bit representation: $b_{n-1} b_{n-2} \ldots b_{1} b_{0}$
Starting with a,
repeatedly double largest number so far to obtain: a, 2a, 4a,, $\mathbf{2 n}^{n-1}$ a

Sum together all the 2^{k} a where $b_{k}=1$
$b=b_{0} 2^{0}+b_{1} 2^{1}+b_{2} 2^{2}+\ldots+b_{n-1} 2^{n-1}$
$a b=b_{0} 2^{0} a+b_{1} 2^{1} a+b_{2} 2^{2} a+\ldots+b_{n-1} 2^{n-1} a$
$2^{k} a$ is in the sum if and only if $b_{k}=1$

Egyptian Base Conversion

Output stream will print right to left

Input X;
repeat \{
if (X is even)
then print 0;
else
$\{X:=X-1 ;$ print 1; \}
$X:=X / 2$;
\} until $X=0$;

$184 / 17$		
Rhind Papyrus [1650 BC]		
Doubling	Powers of 2	Check
17	1	
34	2	$*$
68	4	$*$
136	8	
$184=17 * 8+17 * 2+14$		
$184 / 17=10$ with remainder 14		

Powering By Repeated Multiplication

Input:
a,n
Output: Sequence starting with a, ending with a^{n}, such that each entry other than the first is the product of two previous entries

Example

Input: a,5
Output: $a, a^{2}, a^{3}, a^{4}, a^{5}$
or
Output: a, a^{2}, a^{3}, a^{5}
or
Output: a, a^{2}, a^{4}, a^{5}

Definition of $M(n)$

$M(n)=$ Minimum number of multiplications required to produce a^{n} from a by repeated multiplication

Very Small Examples

What is $M(1)$?

$$
\begin{equation*}
M(1)=0 \tag{a}
\end{equation*}
$$

What is $\mathrm{M}(0)$?
Not clear how to define M(0)
What is $M(2)$?

$$
M(2)=1 \quad\left[a, a^{2}\right]
$$

Given a constant n , how do we implement $b:=a^{n}$
with the fewest number of multiplications?

What is $M(n)$? Can we calculate it exactly? Can we approximate it?

Exemplification: Try out a problem or solution on small examples

$$
? \leq M(8) \leq 3
$$

$3 \leq M(8)$ by exhaustive search

There are only two sequences with 2 multiplications. Neither of them make 8:
a, a^{2}, a^{3} and a, a^{2}, a^{4}

Addition Chains

$M(n)=$ Number of stages required to make n, where we start at 1 and in each stage we add two previously constructed numbers

The "a" is a red herring

Examples

Addition Chain for 8:

12358
Minimal Addition Chain for 8:
1248

Addition Chains For 30

1	2	4	8	16	24	28	30
1	2	4	5	10	20	30	
1	2	3	5	10	15	30	
1	2	4	8	10	20	30	

Binary Representation

Let B_{n} be the number of 1 s in the binary representation of \boldsymbol{n}
E.g.: $B_{5}=2$ since $5=(101)_{2}$

Proposition: $\mathrm{B}_{\mathrm{n}} \leq\left\lfloor\log _{2}(\mathrm{n})\right\rfloor+1$
(It is at most the number of bits in the binary representation of n)

Binary Method
 (Repeated Doubling Method)

Phase I (Repeated Doubling)
For $\left\lfloor\log _{2}(\mathbf{n})\right\rfloor$ stages:
Add largest so far to itself $(1,2,4,8,16, \ldots)$
Phase II (Make n from bits and pieces)
Expand n in binary to see how n is the sum of B_{n} powers of 2 . Use $B_{n}-1$ stages to make \mathbf{n} from the powers of 2 created in phasel

Total cost: $\left\lfloor\log _{2} n\right\rfloor+B_{n}-1$

Binary Method

Applied To 30
Phasel
$1,2,4,8,16$
Cost: 4 additions
Phase II
$30=(11110)_{2}$
$2+4=6$
$6+8=14$
$14+16=30$
Cost: 3 additions

Rhind Papyrus [1650 BC]

What is 30×5 ?

Addition chain for 30	1	5	Start at 5 and perform same additions as chain for 30
	2	10	
	4	20	
	8	40	
	16	80	
	24	120	
	28	140	
	30	150	

Repeated doubling is the same as the Egyptian binary multiplication

The Egyptian Connection

A shortest addition chain for n gives a shortest method for the Egyptian approach to multiplying by the number n

The fastest scribes would seek to know $M(n)$ for commonly arising values of n

Rhind Papyrus [1650 BC]

Actually used faster chain for 30 *5

1	5
2	10
4	20
8	40
10	50
20	100
30	150

A Lower Bound Idea

You can't make any number bigger than 2^{n} in n steps

1248163264 ...

Let S_{k} be the statement that no k stage addition chain contains a number greater than 2^{k}

Base case: $k=0 . S_{0}$ is true since no chain can exceed 2^{0} after 0 stages
$\forall \mathrm{k} \geqslant 0, \quad \mathrm{~S}_{\mathrm{k}} \Rightarrow \mathrm{S}_{\mathrm{k}+1}$
At stage $k+1$ we add two numbers from the previous stage
From S_{k} we know that they both are bounded by 2^{k}
Hence, their sum is bounded by 2^{k+1}. No number greater than 2^{k+1} can be present by stage $\mathrm{k}+1$

Theorem: 2^{i} is the largest number that can be made in i stages, and can only be made by repeated doubling
Proof by Induction:
Base $i=0$ is clear
To make anything as big as 2^{i} requires having some X as big as 2^{i-1} in $\mathrm{i}-1$ stages

By I.H., we must have all the powers of 2 up to 2^{i-1} at stage $\mathrm{i}-1$. Hence, we can only double 2^{i-1} at stage i

$5<M(30)$

Suppose that M(30)=5
At the last stage, we added two numbers x_{1} and x_{2} to get 30
Without loss of generality (WLOG), we assume that $x_{1} \geq x_{2}$
Thus, $x_{1} \geq 15$
By doubling bound, $x_{1} \leq 16$
But $x_{1} \neq 16$ since there is only one way to make 16 in 4 stages and it does not make 14 along the way. Thus, $x_{1}=15$ and $M(15)=4$

Suppose M(15) = 4

At stage 3, a number bigger than 7.5, but not more than 8 must have existed

There is only one sequence that gets 8 in 3 additions: 1248

That sequence does not make 7 along the way and hence there is nothing to add to 8 to make 15 at the next stage

Thus, $\mathrm{M}(15)>4$ CONTRADICTION

Example

$45=5 \times 9$
$M(5)=3$
[1 24 5]
$M(9)=4$
[1 244819$]$
$M(45) \leq 3+4$
[124510204045]

Factoring Bound

$$
M(a \times b) \leq M(a)+M(b)
$$

Proof:
Construct a in M(a) additions
Using a as a unit follow a construction method for b using $\mathbf{M (b)}$ additions. In other words, each time the construction of b refers to a number y, use the number ay instead

Corollary (Using Induction)

$M\left(a_{1} a_{2} a_{3} \ldots a_{n}\right) \leq M\left(a_{1}\right)+M\left(a_{2}\right)+\ldots+M\left(a_{n}\right)$
Proof:
For $\mathrm{n}=1$ the bound clearly holds
Assume it has been shown for up to n-1
Now apply previous theorem using
$A=a_{1} a_{2} a_{3} \ldots a_{n-1}$ and $b=a_{n}$ to obtain:
$M\left(a_{1} a_{2} a_{3} \ldots a_{n}\right) \leq M\left(a_{1} a_{2} a_{3} \ldots a_{n-1}\right)+M\left(a_{n}\right)$
By inductive assumption,
$M\left(a_{1} a_{2} a_{3} \ldots a_{n-1}\right) \leq M\left(a_{1}\right)+M\left(a_{2}\right)+\ldots+M\left(a_{n-1}\right)$

More Corollaries

Corollary: $\mathbf{M}\left(\mathbf{a}^{\mathrm{k}}\right) \leq \mathbf{k M}(\mathrm{a})$
Corollary: $\mathbf{M}\left(\mathbf{p}_{1}{ }_{1}{ }^{1} \mathbf{p}_{2}{ }^{\alpha} \ldots \boldsymbol{p}_{\mathrm{n}}{ }^{\alpha_{n}}\right) \leq$

$$
\alpha_{1} M\left(p_{1}\right)+\alpha_{2} M\left(p_{2}\right)+\ldots+\alpha_{n} M\left(p_{n}\right)
$$

Does equality hold
for $M(a \times b) \leq M(a)+M(b)$

$$
M(33)<M(3)+M(11)
$$

$$
\begin{equation*}
M(3)=2 \tag{123}
\end{equation*}
$$

$M(11)=5$
[1 23510 11]
$M(3)+M(11)=7$
$M(33)=6$
[1248163233]

The conjecture of equality fails!

Conjecture: $M(2 n)=M(n)+1$

> (A. Goulard)

A fastest way to an even number is to make half that number and then double it

Clearly, $M(2 n) \leq M(n)+1$ but is this inequality tight?

Conjecture: $M(2 n)=M(n)+1$

(A. Goulard)

A fastest way to an even number is to make half that number and then double it

Proof given in 1895 E. de.Ionquieres in L'In FALSEI M(191) $=$ M(382) $=11$ s, vo: FALSE! M(191)=M(382)=11 Furthermore, there are infinitely many such examples

Open Problem
Is there an n such that:
$M(2 n)<M(n)$

Conjecture

Each stage might as well consist of adding the largest number so far to one of the other numbers

First Counter-example: 12,509
[1248161732641282565121024
10412082416483288345 12509]

Open Problem

Prove or disprove the Scholz-Brauer Conjecture:

$$
M\left(2^{n}-1\right) \leq n-1+B_{n}
$$

(The bound that follows from this lecture is too weak: $M\left(2^{n-1}\right) \leq 2 n-1$)

