# 15-251

# Great Theoretical Ideas in Computer Science

## Infinite Sample spaces and Random Walks

Lecture 12 (October 4, 2007)











What does this mean: E[X | A]?

Is this true: Pr[ A ] = Pr[ A | B ] Pr[ B ] + Pr[ A | B ] Pr[ B ] Yes!

Similarly: E[X] = E[X|A] Pr[A] + E[X $|\overline{A}]$  Pr[ $\overline{A}$ ]

















#### **Infinite Probability spaces**

Notice we are using infinite probability spaces here, but we really only defined things for <u>finite</u> spaces so far.

Infinite probability spaces can sometimes be weird.

Luckily, in CS we will almost always be looking at spaces that can be viewed as choice trees where  $Pr(haven't halted by time t) \rightarrow 0 as t \rightarrow \infty$ .

#### General picture

Let sample space S be leaves of a choice tree.

Let  $S_n$  = {leaves at depth  $\leq n$ }.

For event A, let  $A_n = A \cap S_n$ .

If  $\text{lim}_{n \rightarrow \infty} \text{Pr}(S_n) \text{=} 1$  , can define:

 $Pr(A)=lim_{n\to\infty}Pr(A_n).$ 



#### Setting that doesn't fit our model

Event: "Flip coin until #heads > 2\*#tails."

There's a reasonable chance this will <u>never</u> stop...

# How to walk home drunk







































#### We Will Eventually Get Home

Look at the first n steps

There is a non-zero chance  $\boldsymbol{p}_1$  that we get home

Also,  $p_1 \ge (1/n)^n$ 

Suppose we fail

Then, wherever we are, there is a chance  $p_2 \geq (1/n)^n$  that we hit home in the next n steps from there

Probability of failing to reach home by time kn =  $(1 - p_1)(1 - p_2) \dots (1 - p_k) \rightarrow 0$  as  $k \rightarrow \infty$ 



#### **Cover Times**

Cover time (from u)  $C_u = E$  [ time to visit all vertices | start at u ]

Cover time of the graph C(G) = max<sub>u</sub> { C<sub>u</sub> }

(worst case expected time to see all vertices)







True or False:

If the average income of people is \$100 then more than 50% of the people can be earning more than \$200 each

False! else the average would be higher!!!

#### **Markov's Inequality**

If X is a non-negative r.v. with mean E[X], then

 $\Pr[X > 2 E[X]] \leq \frac{1}{2}$ 

 $\Pr[X > k E[X]] \leq 1/k$ 



#### Markov's Inequality

Non-neg random variable X has expectation A = E[X]

 $\geq$  E[X | X > 2A ] Pr[X > 2A] (since X is non-neg)

Also, E[X | X > 2A] > 2A

 $\Rightarrow$  A  $\ge$  2A × Pr[X > 2A]

$$\Rightarrow \frac{1}{2} \ge \Pr[X > 2A]$$

 $\Pr[X > k \times expectation] \le 1/k$ 



#### An Averaging Argument

Suppose I start at u

E[ time to hit all vertices | start at  $u ] \leq C(G)$ 

Hence, by Markov's Inequality:

Pr[ time to hit all vertices > 2C(G) | start at u ]  $\leq \frac{1}{2}$ 

#### So Let's Walk Some Mo!

Pr [ time to hit all vertices > 2C(G) | start at u ]  $\leq \frac{1}{2}$ 

Suppose at time 2C(G), I'm at some node with more nodes still to visit

Pr [ haven't hit all vertices in 2C(G) <u>more</u> time | start at v ]  $\leq \frac{1}{2}$ 

Chance that you failed both times  $\leq \frac{1}{4} = (\frac{1}{2})^2$ 

Hence, Pr[ havent hit everyone in time k × 2C(G) ]  $\leq$  (1/2)^k



















### How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...





# In The 2-d Walk

Returning to the origin in the grid ⇔ both "line" random walks return to their origins

Pr[visit origin at time t] =  $\Theta(1/\sqrt{t}) \times \Theta(1/\sqrt{t})$ =  $\Theta(1/t)$ 

E[ # of visits to origin by time n ] $= <math>\Theta(1/1 + 1/2 + 1/3 + ... + 1/n) = \Theta(\log n)$ 

## But In 3D

Pr[ visit origin at time t ] =  $\Theta(1/\sqrt{t})^3 = \Theta(1/t^{3/2})$ lim<sub>n→∞</sub> E[ # of visits by time n ] < K (constant) Hence Pr[ never return to origin ] > 1/K

