15-251
 Great Theoretical Ideas in Computer Science

Probability Refresher

What's a Random Variable? $X: S \rightarrow \mathbb{R}$ A Random Variable is a real-valued function on a sample space S
$E[X+Y]=E[X]+E[Y]$

$$
E[x]=\sum_{e \in S}^{1} P_{S}[e] X(e)
$$

Probability Refresher

What does this mean: $E[X \mid A]$?
Is this true:
$\operatorname{Pr}[A]=\underbrace{\operatorname{Pr}[A \mid B} \operatorname{Pr}[B]+\underbrace{\operatorname{Pr}[A \mid \bar{B}}] \operatorname{Pr}[\bar{B}]$

$P_{6}(A \cap B)+P_{6}[A \cap \bar{B}]=\operatorname{Pr}[A]$

Infinite Sample spaces and Random Walks

Lecture 12 (October 4, 2007)

Probability Refresher

What does this mean: $E[X \mid A]$?

$$
\begin{aligned}
E[x \mid A] & =\sum_{e \in S} R r[e \mid x] \cdot x(e) \\
& =\sum_{e \in A} R[[e \mid A] x(e)
\end{aligned}
$$

Probability Refresher

What does this mean: $E[X \mid A]$?
Is this true:
$\operatorname{Pr}[A]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]+\operatorname{Pr}[A \mid \bar{B}] \operatorname{Pr}[\bar{B}]$
Yes!

Similarly:
$E[X]=E[X \mid A] \operatorname{Pr}[A]+E[X \mid \bar{A}] \operatorname{Pr}[\bar{A}]$

Pictorial view

Sample space $S=$ leaves in this tree.
$\operatorname{Pr}(x)=$ product of edges on path to x.
If $\mathrm{p}>0, \operatorname{Pr}($ not halting by time n$) \rightarrow \mathbf{0}$ as $\mathrm{n} \rightarrow \infty$.

Reason about expectations too!

Suppose A is a node in this tree
$\operatorname{Pr}(x \mid A)=$ product of edges on path from A to x.

$E[X]=\sum_{x} \operatorname{Pr}(x) X(x)$.
$\mathrm{E}[\mathrm{X} \mid \mathrm{A}]=\sum_{\mathrm{x} \in \mathrm{A}} \operatorname{Pr}(\mathrm{x} \mid \mathrm{A}) \mathrm{X}(\mathrm{x})$.
l.e., it is as if we started the game at A.

Expected number of heads

Flip bias-p coin until heads.

What is expected number of flips?

$$
\sum_{i=p}^{\infty} \underbrace{i \cdot(1-p)^{i-1} \cdot p}_{\text {Pr }[2 \text { faps to se a bead }]}
$$

Infinite Probability spaces

Notice we are using infinite probability spaces here, but we really only defined things for finite spaces so far.

Infinite probability spaces can sometimes be weird.

Luckily, in CS we will almost always be looking at spaces that can be viewed as choice trees where
$\operatorname{Pr}($ haven't halted by time t$) \rightarrow 0$ as $\mathrm{t} \rightarrow \infty$.

Expected number of heads

Let $\mathrm{X}=$ \# flips.
$B=$ event "1st flip is heads"

$$
\begin{aligned}
E[X] & =E[X \mid B] \times \operatorname{Pr}(B)+E[X \mid \neg B] \times \operatorname{Pr}(\neg B) \\
& =1 \times p+(1+E[X]) \times(1-p) .
\end{aligned}
$$

$$
\text { Solving: } p \times E[X]=p+(1-p)
$$

$$
\Rightarrow E[X]=1 / p .
$$

General picture
 Let sample space S be leaves of a choice tree.
 Let $S_{n}=\{$ leaves at depth $\leq \mathbf{n}\}$.
 For event A, let $A_{n}=A \cap S_{n}$.
 If $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(S_{n}\right)=1$, can define:
 $$
\operatorname{Pr}(A)=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{n}\right)
$$

\qquad

How to walk home drunk

Simpler:
Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability

Abstraction of Student Life

Simpler: Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability

Simpler:
 Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability

Simpler:
Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability

Simpler:
 Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability

Random Walk on a Line

You go into a casino with $\$ k$, and at each time step, you bet $\$ 1$ on a fair game

You leave when you are broke or have $\$ \mathrm{n}$

Question 1: what is your expected amount of money at time t?

Let X_{t} be a R.V. for the amount of $\$ \$ \$$ at time t

Random Walk on a Line

You go into a casino with $\$ k$, and at each time step, you bet $\$ 1$ on a fair game

You leave when you are broke or have $\$ \mathrm{n}$

$\mathrm{X}_{\mathrm{t}}=\mathrm{k}+\delta_{1}+\delta_{2}+\ldots+\delta_{\mathrm{t}}$,
(δ_{i} is RV for change in your money at time i)
$\mathrm{E}\left[\delta_{i}\right]=0$
So, $E\left[X_{t}\right]=k$

Random Walk on a Line

You go into a casino with $\$ k$, and at each time step, you bet $\$ 1$ on a fair game

You leave when you are broke or have $\$ \mathrm{n}$

Question 2: what is the probability that you leave with $\$ n$?

Random Walk on a Line

Question 2: what is the probability that you leave with $\$ n$?

$$
\begin{aligned}
E\left[X_{t}\right] & =k \\
E\left[X_{t}\right] & =E\left[X_{t} \mid X_{t}=0\right] \times \operatorname{Pr}\left(X_{t}=0\right) \longleftarrow 0 \\
& +E\left[X_{t} \mid X_{t}=n\right] \times \operatorname{Pr}\left(X_{t}=n\right) \longleftarrow n \cdot \operatorname{Pr}\left[X_{t}=n\right] \\
& +E\left[X_{t} \mid \text { neither }\right] \times \operatorname{Pr}(\text { neither }) \\
k & =n \times \operatorname{Pr}\left(X_{t}=n\right) \\
& +\left(\text { something }{ }_{t}\right) \times \operatorname{Pr}(\text { neither }) \\
\text { As } t & \rightarrow \infty, \operatorname{Pr}(\text { neither }) \rightarrow 0, \text { also something }{ }_{t}<n \\
& \text { Hence } \operatorname{Pr}\left(X_{t}=n\right) \rightarrow k / n
\end{aligned}
$$

Another Way To Look At It

You go into a casino with $\$ k$, and at each time step, you bet $\$ 1$ on a fair game

You leave when you are broke or have $\$ \mathrm{n}$

Question 2: what is the probability that you leave with $\$ n$?
$=$ probability that I hit green before I hit red

Random Walks and Electrical Networks

What is chance I reach green before red?

Same as voltage if edges are resistors and we put 1-volt battery between green and red

Random Walks and Electrical Networks

Same as equations for voltage if edges all have same resistance!

Getting Back Home

Lost in a city, you want to get back to your hotel How should you do this?

Depth First Search!
Requires a good memory and a piece of chalk

Getting Back Home

How about walking randomly?

We Will Eventually Get Home

Look at the first n steps
There is a non-zero chance p_{1} that we get home
Also, $p_{1} \geq(1 / n)^{n}$
Suppose we fail
Then, wherever we are, there is a chance p_{2} $\geq(1 / n)^{n}$ that we hit home in the next n steps from there

Probability of failing to reach home by time $\mathbf{k n}$

$$
=\left(1-p_{1}\right)\left(1-p_{2}\right) \ldots\left(1-p_{k}\right) \rightarrow 0 \text { as } k \rightarrow \infty
$$

Cover Times

Cover time (from \mathbf{u})
$\mathrm{C}_{\mathrm{u}}=\mathrm{E}$ [time to visit all vertices | start at u]
Cover time of the graph
$C(G)=\max _{u}\left\{C_{u}\right\}$
(worst case expected time to see all vertices)

A Simple Calculation

True or False:
If the average income of people is $\boldsymbol{\$ 1 0 0}$ then more than 50% of the people can be earning more than $\$ 200$ each

False! else the average would be higher!!!

Markov's Inequality

Non-neg random variable X has expectation A $=\mathrm{E}[\mathrm{X}]$
$A=E[X]=E[X \mid X>2 A] \operatorname{Pr}[X>2 A]$

$$
+E[X \mid X \leq 2 A] \operatorname{Pr}[X \leq 2 A]
$$

$\geq E[X \mid X>2 A] \operatorname{Pr}[X>2 A] \quad$ (since X is non-neg)
Also, $E[X \mid X>2 A]>2 A$
$\Rightarrow A \geq 2 A \times \operatorname{Pr}[X>2 A]$
$\Rightarrow 1 / 2 \geq \operatorname{Pr}[X>2 A]$
$\operatorname{Pr}[X>k \times \operatorname{expectation}] \leq 1 / k$

An Averaging Argument

Suppose I start at u

E [time to hit all vertices | start at u$] \leq \mathbf{C}(\mathbf{G})$
Hence, by Markov's Inequality: $\operatorname{Pr}[$ time to hit all vertices $>2 C(G) \mid$ start at $u] \leq 1 / 2$

Markov's Inequality

If X is a non-negative r.v. with mean $E[X]$, then

$$
\operatorname{Pr}[X>2 E[X]] \leq 1 / 2
$$

$$
\operatorname{Pr}[X>k E[X]] \leq 1 / k
$$

Andrei A. Markov

So Let's Walk Some Mo!

$\operatorname{Pr}[$ time to hit all vertices $>\mathbf{2 C}(G) \mid$ start at $u] \leq 1 / 2$
Suppose at time 2C(G), I'm at some node with more nodes still to visit
$\operatorname{Pr}[$ haven't hit all vertices in $2 C(G)$ more time
| start at v] $\leq 1 / 2$
Chance that you failed both times $\leq 1 / 4=(1 / 2)^{2}$
Hence,
$\operatorname{Pr}[$ havent hit everyone in time $k \times 2 C(G)] \leq(1 / 2)^{k}$

Random Walk On a Line

Flip an unbiased coin and go left/right
Let X_{t} be the position at time t
$\operatorname{Pr}\left[X_{t}=\mathrm{i}\right]=\operatorname{Pr}[$ \#heads - \#tails $=\mathrm{i}]$

$$
\begin{aligned}
& =\operatorname{Pr}[\# \text { heads }-(\mathrm{t}-\# \text { heads })=\mathrm{i}] \\
& =\left[\begin{array}{c}
\mathrm{t} \\
(\mathrm{t}+\mathrm{i}) / 2
\end{array}\right] / 2^{\mathrm{t}}
\end{aligned}
$$

Random Walk On a Line

$\operatorname{Pr}\left[X_{2 t}=0\right]=\left[\begin{array}{c}2 t \\ t\end{array}\right] / 2^{2 t} \leq \Theta(1 / \sqrt{ } t) \quad \begin{gathered}\text { Sterling's } \\ \text { approx }\end{gathered}$
$Y_{2 t}=$ indicator for $\left(X_{2 t}=0\right) \Rightarrow E\left[Y_{2 t}\right]=\Theta(1 / \sqrt{t})$
$Z_{2 n}=$ number of visits to origin in $2 n$ steps

$$
\begin{aligned}
E\left[Z_{2 n}\right] & =E\left[\Sigma_{t=1 \ldots n} Y_{2 t}\right] \\
& \leq \Theta(1 / \sqrt{ } 1+1 / \sqrt{ } 2+\ldots+1 / \sqrt{ } n)=\Theta(\sqrt{ } n)
\end{aligned}
$$

How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

\qquad

How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

$\longrightarrow-$

How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

In The 2-d Walk

Returning to the origin in the grid \Leftrightarrow both "line" random walks return to their origins
$\operatorname{Pr}[$ visit origin at time $t]=\Theta(1 / \sqrt{ } t) \times \Theta(1 / \sqrt{ })$

$$
=\Theta(1 / t)
$$

E \# of visits to origin by time n]
$=\Theta(1 / 1+1 / 2+1 / 3+\ldots+1 / n)=\Theta(\log n)$

But \ln 3D

$\operatorname{Pr}[$ visit origin at time $t]=\Theta(1 / \sqrt{t})^{3}=\Theta\left(1 / t^{3 / 2}\right)$ $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{E}[$ \# of visits by time n] < K (constant)

Hence $\operatorname{Pr}[$ never return to origin] > 1/K

