15-251

Great Theoretical Ideas in Computer Science

Finite Probability Distribution

A (finite) probability distribution \mathbf{D} is a finite "sample space" S of elements or "samples", where each sample x in S has a non-negative real weight or probability $p(x)$

The weights must satisfy:

$$
\sum_{x \in S} p(x)=1
$$

Sample space
weight or probability of x $D(x)=p(x)=0.1$

Events

Any set $E \subseteq S$ is called an event

$$
\operatorname{Pr}_{D}[E]=\sum_{x \in E} p(x)
$$

$$
\operatorname{Pr}_{\mathrm{D}}[\mathrm{E}]=0.4
$$

Conditional Probability

The probability of event A given event B is written $\operatorname{Pr}[\mathrm{A} \mid \mathrm{B}]$ and is defined to be $=$

$$
\frac{\operatorname{Pr}[\mathbf{A} \cap \mathbf{B}]}{\operatorname{Pr}[\mathbf{B}]}
$$

to B

Conditional Probability

The probability of event A given event B is written $\operatorname{Pr}[\mathrm{A} \mid \mathrm{B}]$ and is defined to be $=$

$$
\frac{\operatorname{Pr}[\mathbf{A} \cap \mathbf{B}]}{\operatorname{Pr}[\mathbf{B}]}
$$

A and B are independent events if

$$
\begin{gathered}
\operatorname{Pr}[\mathbf{A} \mid \mathbf{B}]=\operatorname{Pr}[\mathbf{A}] \\
\Leftrightarrow \operatorname{Pr}[\mathbf{A} \cap \mathbf{B}]=\operatorname{Pr}[\mathbf{A}] \operatorname{Pr}[\mathbf{B}] \\
\Leftrightarrow \operatorname{Pr}[\mathbf{B} \mid \mathbf{A}]=\operatorname{Pr}[\mathbf{B}]
\end{gathered}
$$

Lecture 11 (October 2, 2007)

Today, we will learn

 about a formidable tool in probability that will allow us to solve problems that seem really really messy...
If I randomly put 100 letters into 100 addressed envelopes, on average how many letters will end up in their correct envelopes?

Hmm...

$\Sigma_{k} k \operatorname{Pr}(k$ letters end up in correct envelopes)

$$
=\sum_{k} k \text { (...aargh!!...) }
$$

On average, in class of

 size m, how many pairs of people will have the same birthday?
$\sum_{k} \mathrm{k} \operatorname{Pr}($ exactly k collisions)

$$
=\sum_{k} k(\ldots \text { aargh!!!!...) }
$$

The new tool is called "Linearity of Expectation"

Random Variable

To use this new tool, we will also need to understand the concepts of Random Variable and
Expectations

Today's lecture: not too much material, but need to understand it well

Random Variable

Let S be sample space in a probability distribution A Random Variable is a real-valued function on \mathbf{S}

Sample space

Random Variable

Let S be sample space in a probability distribution
A Random Variable is a real-valued function on \mathbf{S}
Examples:
$X=$ value of white die in a two-dice roll

$$
X(3,4)=3, \quad X(1,6)=1
$$

$Y=$ sum of values of the two dice

$$
Y(3,4)=7, \quad Y(1,6)=7
$$

$\mathrm{W}=($ value of white die) value of black die

$$
W(3,4)=3^{4}, \quad Y(1,6)=1^{6}
$$

Tossing a Fair Coin n Times

$S=$ all sequences of $\{H, T\}^{n}$
$D=$ uniform distribution on S

$$
\Rightarrow D(x)=(1 / 2)^{n} \quad \text { for all } x \in \mathbf{S}
$$

Random Variables (say $n=10$)
$X=$ \# of heads
X (HHHTTHTHTT) $=5$
$\mathrm{Y}=$ (1 if \#heads = \#tails, 0 otherwise)
$\mathrm{Y}(\mathrm{HHHT}$ THTHTT $)=1, Y($ THHHHTTTTT $)=0$

Notational Conventions

Use letters like A, B, E for events Use letters like X, Y, f, g for R.V.'s R.V. = random variable

Two Views of Random Variables

Input to the
Think of a R.V. as

A function from S to the reals \mathbb{R}
Or think of the induced distribution on \mathbb{R}

Randomness is "pushed" to the values of the function

Two Coins Tossed

$X:\{T T, T H, H T, H H\} \rightarrow\{0,1,2\}$ counts the number of heads

It's a Floor Wax And a Dessert Topping

From Random Variables to Events

For any random variable X and value a, we can define the event A that " $X=a$ "

$$
\operatorname{Pr}(\mathrm{A})=\operatorname{Pr}(\mathrm{X}=\mathrm{a})=\operatorname{Pr}(\{\mathrm{x} \in \mathrm{~S} \mid \mathrm{X}(\mathrm{x})=\mathrm{a}\})
$$

Two Coins Tossed

$X:\{T T, T H, H T, H H\} \rightarrow\{0,1,2\}$ counts \# of heads

From Events to Random Variables

For any event A, can define the indicator random variable for A :

$$
X_{A}(x)=\left\{\begin{array}{l}
1 \text { if } x \in \mathbf{A} \\
0 \text { if } x \notin \mathbf{A}
\end{array}\right.
$$

Definition: Expectation

The expectation, or expected value of a random variable X is written as $\mathrm{E}[\mathrm{X}]$, and is

$$
E[X]=\sum_{X \in S} \operatorname{Pr}(X) X(X)=\sum k \operatorname{Pr}[X=k]
$$

X has a
distribution on
its values

A Quick Calculation...

What if I flip a coin 2 times? What is the expected number of heads?

A Quick Calculation...

What if I flip a coin 3 times? What is the expected number of heads?
$E[X]=(1 / 8) \times 0+(3 / 8) \times 1+(3 / 8) \times 2+(1 / 8) \times 3=1.5$
But $\operatorname{Pr}[X=1.5]=0$
Moral: don't always expect the expected. $\operatorname{Pr}[X=E[X]]$ may be $0!$

Type Checking

Indicator R.V.s: $\mathrm{E}\left[\mathrm{X}_{\mathrm{A}}\right]=\operatorname{Pr}(\mathrm{A})$

For any event A, can define the indicator random variable for A :

$$
X_{A}(x)=\left\{\begin{array}{l}
1 \text { if } x \in A \\
0 \text { if } x \notin A \quad E\left[X_{A}\right]=1 \times \operatorname{Pr}\left(X_{A}=1\right)=\operatorname{Pr}(A)
\end{array}\right.
$$

Adding Random Variables

If X and Y are random variables (on the same set S), then
$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$ is also a random variable

$$
Z(x)=X(x)+Y(x)
$$

E.g., rolling two dice. $X=1$ st die, $Y=2 n d$ die,
$\mathrm{Z}=$ sum of two dice

Adding Random Variables

Example: Consider picking a

 random person in the world. Let$X=$ length of the person's left arm in inches. $Y=$ length of the person's right arm in inches. Let $Z=X+Y$. Z measures the combined arm lengths

Independence

Two random variables X and Y are independent if for every a, b, the events $\mathrm{X}=\mathrm{a}$ and $Y=b$ are independent

How about the case of $X=1$ st die, $Y=2$ nd die? $X=$ left arm, $Y=$ right arm?

Linearity of Expectation

$$
\begin{gathered}
\text { If } Z=X+Y \text {, then } \\
E[Z]=E[X]+E[Y]
\end{gathered}
$$

Even if X and Y are not independent!

$$
\begin{aligned}
E[Z] & =\sum_{x \in S} \operatorname{Pr}[x] Z(x) \\
& =\sum_{x \in S} \operatorname{Pr}[x](X(x)+Y(x)) \\
& \left.=\sum_{x \in S} \operatorname{Pr}[x] X(x)+\sum_{x \in S} \operatorname{Pr}[x] Y(x)\right) \\
& =E[X]+E[Y]
\end{aligned}
$$

Linearity of Expectation

Linearity of Expectation

E.g., 2 fair flips:

$X=$ at least one coin is heads $Y=$ both coins are heads, $Z=X+Y$ Are X and Y independent? What is $E[X]$? $E[Y]$? $E[Z]$?
$\begin{array}{cc}1,0,1 & H H \\ \text { HT } & 0,0,0 \\ & \text { TT }\end{array}$
1,0,1
TH

By Induction

$E\left[X_{1}+X_{2}+\ldots+X_{n}\right]=$
$\mathrm{E}\left[\mathrm{X}_{1}\right]+\mathrm{E}\left[\mathrm{X}_{2}\right]+\ldots .+\mathrm{E}\left[\mathrm{X}_{n}\right]$

It is finally time to show off our probability prowess...

If I randomly put 100 letters into 100 addressed envelopes, on average how many letters will end up in their correct envelopes?

Hmm...

$\Sigma_{k} \mathrm{k} \operatorname{Pr}(\mathrm{k}$ letters end up in correct envelopes)
$=\sum_{k} k$ (...aargh!!...)

Use Linearity of Expectation

Let A_{i} be the event the $i^{\text {th }}$ letter ends up in its correct envelope

Let X_{i} be the indicator R.V. for A_{i}

$$
\begin{aligned}
& X_{i}=\left\{\begin{array}{l}
1 \text { if } A_{i} \text { occurs } \\
0 \text { otherwise }
\end{array}\right. \\
& \text { Let } Z=X_{1}+\ldots+X_{100} \\
& \text { We are asking for } E[Z] \\
& E\left[X_{i}\right]=\operatorname{Pr}\left(A_{i}\right)=1 / 100 \\
& \text { So } E[Z]=1
\end{aligned}
$$

So, in expectation, 1 letter will be in the same correct envelope

Pretty neat: it doesn't depend on how many letters!

Question: were the X_{i} independent?
No! E.g., think of $n=2$

Use Linearity of Expectation

General approach:
View thing you care about as expected value of some RV

Write this RV as sum of simpler RVs (typically indicator RVs)

Solve for their expectations and add them up!

Example

We flip n coins of bias p. What is the expected number of heads?

We could do this by summing

$$
\sum_{k} k \operatorname{Pr}(X=k)=\sum_{k} k\left[\begin{array}{l}
n \\
k
\end{array}\right] p^{k}(1-p)^{n-k}
$$

But now we know a better way!

Linearity of Expectation!

Let $\mathrm{X}=$ number of heads when n independent coins of bias p are flipped

Break X into n simpler RVs:

$$
X_{i}=\left\{\begin{array}{l}
1 \text { if the } j^{\text {th }} \text { coin is tails } \\
0 \text { if the } j^{\text {th }} \text { coin is heads }
\end{array}\right.
$$

$E[X]=E\left[\Sigma_{i} X_{i}\right]=n p$

What About Products?

But It's True If RVs Are Independent

$$
\text { Proof: } \begin{aligned}
& E[X]=\sum_{a} a \times \operatorname{Pr}(X=a) \\
& E[Y]=\sum_{b} b \times \operatorname{Pr}(Y=b) \\
E[X Y] & =\sum_{c} \mathbf{c} \times \operatorname{Pr}(X Y=c) \\
& =\sum_{c} \sum_{a, b}: a b=c \times \operatorname{Pr}(X=a \cap Y=b) \\
& =\sum_{a, b} \mathrm{ab} \times \operatorname{Pr}(X=a \cap Y=b) \\
& =\sum_{a, b} \mathrm{ab} \times \operatorname{Pr}(X=a) \operatorname{Pr}(Y=b) \\
& =E[X] E[Y]
\end{aligned}
$$

> Example: 2 fair flips
> $X=$ indicator for 1 st coin heads
> $Y=$ indicator for 2 nd coin heads
> $X Y=$ indicator for "both are heads"
> $E[X]=1 / 2, E[Y]=1 / 2, E[X Y]=1 / 4$
> $E\left[X^{*} X\right]=E[X]^{2} ?$
> No: $E\left[X^{2}\right]=1 / 2, E[X]^{2}=1 / 4$

In fact, $E\left[X^{2}\right]-E[X]^{2}$ is called the variance of X

Most of the time, though, power will come from using sums

Mostly because
Linearity of Expectations holds even if RVs are not independent

On average, in class of

 size m, how many pairs of people will have the same birthday?
$\sum_{k} \mathrm{k} \operatorname{Pr}($ exactly k collisions)

$$
=\sum_{k} k(\ldots \text { aargh!!!!...) }
$$

Use linearity of expectation

Suppose we have m people each with a uniformly chosen birthday from 1 to 366
$X=$ number of pairs of people with the same birthday

$$
E[X]=?
$$

$X=$ number of pairs of people with the same birthday

$E[X]=$?
Use $m(m-1) / 2$ indicator variables, one for each pair of people
$\mathrm{X}_{\mathrm{jk}}=1$ if person j and person k have the same birthday; else 0

$$
\begin{aligned}
E\left[X_{\mathrm{jk}}\right] & =(1 / 366) 1+(1-1 / 366) 0 \\
& =1 / 366
\end{aligned}
$$

$X=$ number of pairs of people with the same birthday

$\mathrm{X}_{\mathrm{jk}}=1$ if person j and person k have the same birthday; else 0

$$
\begin{aligned}
E\left[X_{j k}\right] & =(1 / 366) 1+(1-1 / 366) 0 \\
& =1 / 366 \\
E[X] & =E\left[\Sigma_{j \leq k \leq m} X_{j k}\right] \\
& =\Sigma_{j \leq k \leq m} E\left[X_{j k}\right] \\
& =m(m-1) / 2 \times 1 / 366
\end{aligned}
$$

Step Right Up...

You pick a number $n \in$ [1..6]. You roll 3 dice. If any match n, you win \$1. Else you pay me \$1. Want to play?

Hmm...
let's see

Analysis

$A_{i}=$ event that i-th die matches
$X_{i}=$ indicator $R V$ for A_{i}
Expected number of dice that match:
$E\left[X_{1}+X_{2}+X_{3}\right]=1 / 6+1 / 6+1 / 6=1 / 2$
But this is not the same as
Pr(at least one die matches)

Analysis

$\operatorname{Pr}($ at least one die matches) = 1 - Pr (none match) $=1-(5 / 6)^{3}=0.416$

Random Variables

Definition

Indicator r.v.s
Two Views of r.v.s
Expectation
Definition
Linearity
Here's What
You Need to Know...

How to solve problems using r.v.s \& expectations.

