

Probability Theory: Counting in Terms of Proportions

Lecture 10 (September 27, 2007)

Teams A and B are equally good In any one game, each is equally likely to win What is most likely length of a "best of 7" series?

Flip coins until either 4 heads or 4 tails Is this more likely to take 6 or 7 flips?

6 and 7 Are Equally Likely
To reach either one, after 5 games, it must be 3 to 2
$1 / 2$ chance it ends 4 to $2 ; 1 / 2$ chance it doesn't

Language of Probability

Finite Probability Distribution

A (finite) probability distribution D is a finite set S of elements, where each element x in S has a positive real weight, proportion, or probability $p(x)$

The weights must satisfy:

$$
\sum_{x \in S} p(x)=1
$$

For convenience we will define $D(x)=p(x)$
S is often called the sample space and elements x in S are called samples

Sample Space

Events

Any set $E \subseteq S$ is called an event
$P r_{D}[E]=\sum_{x \in E} p(x)$

$\operatorname{Pr}_{\mathrm{D}}[\mathrm{E}]=0.4$

Same Methodology!

$S=\{(1,1), \quad(1,2), \quad(1,3), \quad(1,4), \quad(1,5), \quad(1,6)$,
$(2,1),(2,2), \quad(2,3), \quad(2,4),(2,5), \quad(2,6)$,
$(3,1),(3,2), \quad(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$,
$(6,1)(6,2), \quad(6,3), \quad(6,4), \quad(6,5),(6,6)\}$
$\operatorname{Pr}[E]=|E| /|S|=$ proportion of E in $S=8 / 36$

And The Same Methods Again!

Sample space $W=\{1,2,3, \ldots, 366\}^{23}$

Event $E=\{x \in W \mid$ two numbers in x are same $\}$
What is |티? Count $|\bar{E}|$ instead!

$$
\begin{aligned}
& \bar{E}=\begin{array}{l}
\text { all sequences in } S \text { that have no } \\
\text { repeated numbers }
\end{array} \\
& |\bar{E}|=(366)(365) \ldots(344) \\
& |W|=366^{23} \\
& \frac{|\bar{E}|}{|W|}=0.494 \ldots
\end{aligned}
$$

$$
\frac{|E|}{|W|}=0.506 \ldots
$$

The Descendants of Adam

Adam was X inches tall
He had two sons:
One was $X+1$ inches tall
One was $\mathrm{X}-1$ inches tall
Each of his sons had two sons ...
In the $n^{\text {th }}$ generation there will be $2^{\mathbf{n}}$ males, each with one of $n+1$ different heights:

$$
h_{0}, h_{1}, \ldots, h_{n}
$$

$h_{i}=(X-n+2 i)$ occurs with proportion: $\left[\begin{array}{l}n \\ i\end{array}\right] / 2^{n}$

Unbiased Binomial Distribution On n+1 Elements

Let S be any set $\left\{h_{0}, h_{1}, \ldots, h_{n}\right\}$ where each element h_{i} has an associated probability

$$
\frac{\left[\begin{array}{c}
n \\
i
\end{array}\right]}{2^{n}}
$$

Any such distribution is called an Unbiased Binomial Distribution or an Unbiased Bernoulli Distribution

More Language Of Probability

The probability of event A given event B is written $\operatorname{Pr}[A \mid B]$ and is defined to be $=$

$$
\frac{\operatorname{Pr}[\mathbf{A} \cap \mathbf{B}]}{\operatorname{Pr}[\mathbf{B}]}
$$

$S=\left\{\begin{array}{lll}(1,1), \quad(1,2), \quad(1,3), \quad(1,4), \quad(1,5), \quad(1,6),\end{array}\right.$
$(2,1),(2,2), \quad(2,3), \quad(2,4), \quad(2,5), \quad(2,6)$,
$(3,1),(3,2),(3,3),(3,4),(3,5), \quad(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5), \quad(4,6)$,
$(5,1), \quad(5,2), \quad(5,3), \quad(5,4), \quad(5,5), \quad(5,6)$,
$(6,1) \quad(6,2), \quad(6,3), \quad(6,4), \quad(6,5), \quad(6,6)\}$
$\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{|A \cap B|}{|B|}=\frac{1}{6}$
event $A=\{$ white die $=1\}$
event $B=\{$ total $=7\}$

Independence!

A and B are independent events if

$$
\begin{gathered}
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \\
\Leftrightarrow \\
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
\Leftrightarrow \\
\operatorname{Pr}[B \mid A]=\operatorname{Pr}[B]
\end{gathered}
$$

Independence!

$A_{1}, A_{2}, \ldots, A_{k}$ are independent events if knowing if some of them occurred does not change the probability of any of the others occurring

> E.g., $\left\{A_{1}, A_{2}, A_{3}\right\}$ are independent events if:
$\operatorname{Pr}\left[A_{1} \mid A_{2} \cap A_{3}\right]=\operatorname{Pr}\left[A_{1}\right]$
$\operatorname{Pr}\left[A_{2} \mid A_{1} \cap A_{3}\right]=\operatorname{Pr}\left[A_{2}\right]$
$\operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{3}\right]$
$\operatorname{Pr}\left[A_{1} \mid A_{2}\right]=\operatorname{Pr}\left[A_{1}\right]$
$\operatorname{Pr}\left[A_{1} \mid A_{3}\right]=\operatorname{Pr}\left[A_{1}\right]$
$\operatorname{Pr}\left[A_{2} \mid A_{1}\right]=\operatorname{Pr}\left[A_{2}\right]$
$\operatorname{Pr}\left[A_{2} \mid A_{3}\right]=\operatorname{Pr}\left[A_{2}\right]$
$\operatorname{Pr}\left[A_{3} \mid A_{2}\right]=\operatorname{Pr}\left[A_{3}\right]$

Silver and Gold

One bag has two silver coins, another has two gold coins, and the third has one of each

One bag is selected at random. One coin from it is selected at random. It turns out to be gold What is the probability that the other coin is gold?

Let G_{1} be the event that the first coin is gold
$\operatorname{Pr}\left[G_{1}\right]=1 / 2$
Let G_{2} be the event that the second coin is gold
$\operatorname{Pr}\left[G_{2} \mid G_{1}\right]=\operatorname{Pr}\left[G_{1}\right.$ and $\left.G_{2}\right] / \operatorname{Pr}\left[G_{1}\right]$

$$
\begin{aligned}
& =(1 / 3) /(1 / 2) \\
& =2 / 3
\end{aligned}
$$

Note: G_{1} and G_{2} are not independent

Monty Hall Problem

Announcer hides prize behind one of 3 doors at random

You select some door
Announcer opens one of others with no prize
You can decide to keep or switch
What to do?

Monty Hall Problem

Sample space $=\{$ prize behind door 1, prize behind door 2, prize behind door 3 \}

Each has probability 1/3

Staying
we win if we chose the correct door
$\operatorname{Pr}[$ choosing correct door] $=1 / 3$

Switching we win if we chose the incorrect door

Pr[choosing incorrect door] =

2/3

Why Was This Tricky?

We are inclined to think:
"After one door is opened, others are equally likely..."

But his action is not independent of yours!

