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Lecture 8 (September 20, 2007)

Counting III



Arrange n symbols: r1 of type 1, 
r2 of type 2, …, rk of type k

n
r1

n-r1

r2
…

n - r1 - r2 - … - rk-1

rk

(n-r1)!

(n-r1-r2)!r2!

n!

(n-r1)!r1!
= …

=
n!

r1!r2! … rk!



14!

2!3!2!
= 3,632,428,800

CARNEGIEMELLON



5 distinct pirates want to divide 
20 identical, indivisible bars of 
gold. How many different ways 

can they divide up the loot?



Sequences with 20 G’s and 4 /’s

How many different ways to 
divide up the loot?

24
4



How many different ways can n 
distinct pirates divide k identical, 

indivisible bars of gold?

n + k - 1
n - 1

n + k - 1
k

=



How many integer solutions 
to the following equations?

x1 + x2 + x3 + … + xn = k

x1, x2, x3, …, xn ≥ 0

n + k - 1
n - 1

n + k - 1
k

=



Identical/Distinct Dice

Suppose that we roll seven dice

How many different outcomes are 
there, if order matters? 67

What if order doesn’t matter?
(E.g., Yahtzee)

12
7

(Corresponds to 6 pirates and 7 bars of gold)



Identical/Distinct Objects

If we are putting k objects into 
n distinct bins.

Objects are 
indistinguishable

nkObjects are 
distinguishable

k+n-1
k



binomial 
expression

Binomial Coefficients

The Binomial Formula

n
1

(1+X)n =
n
0

X0 + X1 +…+
n
n

Xn



What is the coefficient 
of (X1

r1X2
r2…Xk

rk)
in the expansion of
(X1+X2+X3+…+Xk)n?

n!

r1!r2!...rk!



Power Series Representation

(1+X)n =
n
k

Xk∑
k = 0

n

n
k

Xk∑
k = 0

∞

=“Product form” or
“Generating form”

“Power Series” or “Taylor Series” Expansion

For k>n,

n
k

= 0



By playing these two representations 
against each other we obtain a new 
representation of a previous insight:

(1+X)n =
n
k

Xk∑
k = 0

n

Let x = 1,
n
k∑

k = 0

n

2n =

The number of subsets 
of an n-element set



By varying x, we can discover new 
identities:

(1+X)n =
n
k

Xk∑
k = 0

n

Let x = -1,
n
k∑

k = 0

n

0 = (-1)k

Equivalently,
n
k∑

k even

n
n
k∑

k odd

n

=



The number of subsets 
with even size is the 

same as the number of 
subsets with odd size



Proofs that work by manipulating 
algebraic forms are called 

“algebraic” arguments. 
Proofs that build a bijection are 

called “combinatorial” arguments

(1+X)n =
n
k

Xk∑
k = 0

n



Let On be the set of binary strings of 
length n with an odd number of ones.

Let En be the set of binary strings of 
length n with an even number of ones.

We just saw an algebraic proof that
|On | = | En |

n
k∑

k even

n
n
k∑

k odd

n

=



A Combinatorial  Proof

Let On be the set of binary strings of length n 
with an odd number of ones

Let En be the set of binary strings of length n 
with an even number of ones

A combinatorial proof must construct a 
bijection between On  and En 



An Attempt at a Bijection
Let fn be the function that takes an 

n-bit string and flips all its bits

fn is clearly a one-to-
one and onto function

...but do even n
work? In f6 we have

for odd n.  E.g. in f7
we have:

110011 001100
101010 010101

0010011 1101100
1001101 0110010

Uh oh.  Complementing 
maps evens to evens!



A Correspondence That 
Works for all n

Let fn be the function that takes an n-bit string 
and flips only the first bit. For example,

0010011 1010011
1001101 0001101

110011 010011
101010 001010



The binomial coefficients have so 
many representations that many 

fundamental mathematical 
identities emerge…

(1+X)n =
n
k

Xk∑
k = 0

n



n
k

n-1
k

n-1
k-1

+=

Set of all
k-subsets
of {1..n}

Either we
do not pick n:

then we have to
pick k elements

out of the 
remaining n-1.

Or we
do pick n:

then we have to
pick k-1 elts.

out of the 
remaining n-1.



The Binomial Formula

(1+X)0 =

(1+X)1 =

(1+X)2 =

(1+X)3 =

(1+X)4 =

1

1 + 1X

1 + 2X + 1X2

1 + 3X + 3X2 + 1X3

1 + 4X + 6X2 + 4X3 + 1X4

Pascal’s Triangle: kth row are coefficients of (1+X)k

Inductive definition of kth entry of nth row:
Pascal(n,0) = Pascal (n,n) = 1; 

Pascal(n,k) = Pascal(n-1,k-1) + Pascal(n-1,k)



“Pascal’s Triangle”
0
0

= 1

1
0

= 1 1
1

= 1

2
0

= 1 2
1

= 2 2
2

= 1

• Al-Karaji, Baghdad 953-1029
• Chu Shin-Chieh 1303
• Blaise Pascal 1654

3
0

= 1 3
1

= 3 3
2

= 3 3
3

= 1



Pascal’s Triangle

“It is extraordinary
how fertile in

properties the
triangle is.

Everyone can
try his
hand”

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Summing the Rows

+

+ +

+ + +

+ + + +

+ + + + +

+ + + + + +

n
k∑

k = 0

n

2n = = 1

= 2

= 4

= 8

= 16

= 32

= 64



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 + 15 + 15 + 1 6 + 20 + 6=

Odds and Evens



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Summing on 1st Avenue

∑
i = 1

n
i
1

=∑
i = 1

n

i n+1
2=



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Summing on kth Avenue

∑
i = k

n
i
k

n+1
k+1=



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Fibonacci Numbers

= 2
= 3

= 5
= 8

= 13



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Sums of Squares

2 2 2

2 2 2 2



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Al-Karaji Squares

+2⋅

+2⋅

+2⋅

+2⋅

+2⋅

= 1

= 4

= 9

= 16

= 25

= 36



Pascal Mod 2



All these properties can 
be proved inductively 
and algebraically. We 
will give combinatorial

proofs using the 
Manhattan block 

walking representation 
of binomial coefficients



How many shortest routes from A to B?

B

A

10
5



Manhattan

jth street kth avenue1
0

2

4
3

0
1

2
3

4

There are shortest routes from (0,0) to (j,k)j+k
k



Manhattan

Level n kth avenue1
0

2

4
3

0
1

2
3

4

There are shortest routes from (0,0) to (n-k,k)n
k



Manhattan

Level n kth avenue1
0

2

4
3

0
1

2
3

4

There are shortest routes from (0,0) ton
k

level n and kth avenue



Level n kth avenue1
0

2

4
3

0
1

2
3

4

1
1

1
1

1

1
1

1
1

2
3 3

4 46
1 15 510 10

66 1515 20



Level n kth avenue1
0

2

4
3

1
1

1
1

1

1
1

1
1

2
3 3

4 46
1 15 510 10

66 1515 20

n
k

n-1
k-1

n-1
k

= +

+



Level n kth avenue1
0

2

4
3

0
1

2
3

4

2n
n

n
k∑

k = 0

n 2

=



Level n kth avenue1
0

2

4
3

0
1

2
3

4

n+1
k+1

i
k∑

i = k

n

=



Vector Programs

Let’s define a (parallel) programming 
language called VECTOR that operates 
on possibly infinite vectors of numbers. 
Each variable V→ can be thought of as:

< * , * , * , * , *, *, … >



Vector Programs

Let k stand for a scalar constant
<k> will stand for the vector <k,0,0,0,…>

<0> = <0,0,0,0,…>
<1> = <1,0,0,0,…>

V→ + T→ means to add the vectors position-wise

<4,2,3,…> + <5,1,1,….> = <9,3,4,…>



Vector Programs

RIGHT(V→) means to shift every 
number in V→ one position to the right
and to place a 0 in position 0

RIGHT( <1,2,3, …> ) = <0,1,2,3,…>



Vector Programs

Example:

V→ := <6>;
V→ := RIGHT(V→) + <42>;
V→ := RIGHT(V→) + <2>;
V→ := RIGHT(V→) + <13>;

V→ = < 13, 2, 42, 6, 0, 0, 0, … >

Store:

V→ = <6,0,0,0,…>
V→ = <42,6,0,0,…>
V→ = <2,42,6,0,…>
V→= <13,2,42,6,…>



Vector Programs

Example:

V→ := <1>;

Loop n times
V→ := V→ + RIGHT(V→);

V→ = nth row of Pascal’s triangle

Store:

V→ = <1,0,0,0,…>
V→ = <1,1,0,0,…>
V→ = <1,2,1,0,…>
V→= <1,3,3,1,…>
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Vector programs can 
be implemented by 

polynomials!



Programs → Polynomials

The vector V→ = < a0, a1, a2, . . . > will be 
represented by the polynomial:

∑
i = 0

∞

aiXiPV =



Formal Power Series

The vector V→ = < a0, a1, a2, . . . > will be 
represented by the formal power series:

∑
i = 0

∞

aiXiPV =



∑
i = 0

∞

aiXiPV =

V→ = < a0, a1, a2, . . . >

<0> is represented by

<k> is represented by

0

k

V→ + T→ is represented by (PV + PT)

RIGHT(V→) is represented by (PV X)



Vector Programs

Example:

V→ := <1>;

Loop n times
V→ := V→ + RIGHT(V!);

V→ = nth row of Pascal’s triangle

PV := 1;

PV := PV + PV X;



Vector Programs

Example:

V→ := <1>;

Loop n times
V→ := V→ + RIGHT(V!);

V→ = nth row of Pascal’s triangle

PV := 1;

PV := PV(1+X);



Vector Programs

Example:

V→ := <1>;

Loop n times
V→ := V→ + RIGHT(V!);

V→ = nth row of Pascal’s triangle

PV = (1+ X)n



• Polynomials count

• Binomial formula

• Combinatorial proofs of   
binomial identities

• Vector programsHere’s What 
You Need to 

Know…


