15-251

Great Theoretical Ideas in Computer Science

Counting III

Lecture 8 (September 20, 2007)

Arrange n symbols: r_{1} of type 1 ,

 r_{2} of type $2, \ldots, r_{k}$ of type $k$$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{l}
n \\
r_{1}
\end{array}\right]}
\end{array}\right]\left[\begin{array}{c}
n-r_{1} \\
r_{2}
\end{array}\right] \ldots\left[\begin{array}{c}
n-r_{1}-r_{2}-\ldots-r_{k-1} \\
r_{k}
\end{array}\right]\right) \text { } \begin{aligned}
\left(n-r_{1}\right)!r_{1}! & \frac{\left(n-r_{1}\right)!}{\left(n-r_{1}-r_{2}\right)!r_{2}!} \cdots \\
& =\frac{n!}{r_{1}!r_{2}!\ldots r_{k}!}
\end{aligned}
$$

CARNEGIEMELLON

$\frac{14!}{2!3!2!}=3,632,428,800$

How many different ways to divide up the loot?

Sequences with 20 G's and 4 /'s

$$
\binom{24}{4}
$$

How many different ways can n distinct pirates divide k identical, indivisible bars of gold?
 $$
\binom{n+k-1}{n-1}=\binom{n+k-1}{k}
$$

How many integer solutions to the following equations?

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+\ldots+x_{n}=k \\
x_{1}, x_{2}, x_{3}, \ldots, x_{n} \geq 0 \\
\binom{n+k-1}{n-1}=\binom{n+k-1}{k}
\end{gathered}
$$

Identical/Distinct Dice

Suppose that we roll seven dice

How many different outcomes are there, if order matters?

What if order doesn't matter?
(E.g., Yahtzee)
$\left[\begin{array}{c}12 \\ 7\end{array}\right]$
(Corresponds to 6 pirates and 7 bars of gold)

Identical/Distinct Objects

If we are putting k objects into n distinct bins.

Objects are distinguishable	n^{k}
Objects are indistinguishable	$\left[\begin{array}{c}k+n-1 \\ k\end{array}\right]$

The Binomial Formula

$(1+X)^{n}=\left[\begin{array}{l}n \\ 0\end{array}\right] x^{0}+\left[\begin{array}{l}n \\ 1\end{array}\right] x^{1}+\ldots+\left[\begin{array}{l}n \\ n\end{array}\right] x^{n}$
Binomial Coefficients
binomial expression

What is the coefficient of ($X_{1}{ }^{r_{1}} X_{2}{ }^{r_{2}} \ldots X_{k}{ }^{{ }^{k}}$) in the expansion of $\left(X_{1}+X_{2}+X_{3}+\ldots+X_{k}\right)^{n}$?

n!

$r_{1}!r_{2}!\ldots r_{k}!$

Power Series Representation

"Power Series" or "Taylor Series" Expansion

By playing these two representations against each other we obtain a new representation of a previous insight:

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

$$
\text { Let } x=1, \quad 2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

The number of subsets of an n-element set

By varying x, we can discover new identities:

$$
\begin{aligned}
& \qquad(1+X)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \\
& \text { Let } x=-1, \quad 0=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{k} \\
& \text { Equivalently, } \quad \sum_{k \text { odd }}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]=\sum_{k \text { even }}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]
\end{aligned}
$$

The number of subsets with even size is the same as the number of subsets with odd size

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

Proofs that work by manipulating algebraic forms are called "algebraic" arguments.
Proofs that build a bijection are \& called "combinatorial" arguments

$$
\sum_{k \text { odd }}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right)=\sum_{k \text { even }}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right)
$$

Let O_{n} be the set of binary strings of length n with an odd number of ones.

Let E_{n} be the set of binary strings of length n with an even number of ones.

We just saw an algebraic proof that

$$
\left|O_{n}\right|=\left|E_{n}\right|
$$

A Combinatorial Proof

Let O_{n} be the set of binary strings of length \boldsymbol{n} with an odd number of ones

Let E_{n} be the set of binary strings of length \boldsymbol{n} with an even number of ones

A combinatorial proof must construct a bijection between O_{n} and E_{n}

An Attempt at a Bijection

Let f_{n} be the function that takes an

 n -bit string and flips all its bitsf_{n} is clearly a one-toone and onto function
for odd n. E.g. in f_{7} we have:
$0010011 \rightarrow 1101100$
$1001101 \rightarrow 0110010$
...but do even n work? $\ln f_{6}$ we have $110011 \rightarrow 001100$ $101010 \rightarrow 010101$

Uh oh. Complementing maps evens to evens!

A Correspondence That Works for all \boldsymbol{n}

Let f_{n} be the function that takes an n-bit string and flips only the first bit. For example,
$0010011 \rightarrow 1010011$
$1001101 \rightarrow 0001101$
$110011 \rightarrow 010011$ $101010 \rightarrow 001010$

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

The binomial coefficients have so many representations that many fundamental mathematical identities emerge...

The Binomial Formula

$$
\begin{array}{lc}
(1+X)^{0}= & 1 \\
(1+X)^{1}= & 1+1 X \\
(1+X)^{2}= & 1+2 X+1 X^{2} \\
(1+X)^{3}= & 1+3 X+3 X^{2}+1 X^{3} \\
(1+X)^{4}= & 1+4 X+6 X^{2}+4 X^{3}+1 X^{4}
\end{array}
$$

Pascal's Triangle: $k^{\text {th }}$ row are coefficients of $(1+X)^{k}$
Inductive definition of $\mathrm{k}^{\text {th }}$ entry of $\mathrm{n}^{\text {th }}$ row: Pascal($n, 0$) $=$ Pascal $(n, n)=1$;
Pascal(n, k) $=$ Pascal($\mathrm{n}-1, \mathrm{k}-1)+\operatorname{Pascal}(\mathrm{n}-1, \mathrm{k})$

"Pascal's Triangle"

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=1
$$

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1 \quad\left[\begin{array}{l}
1 \\
1
\end{array}\right]=1
$$

$$
\left[\begin{array}{l}
2 \\
0
\end{array}\right]=1 \quad\left[\begin{array}{l}
2 \\
1
\end{array}\right]=2 \quad\left[\begin{array}{l}
2 \\
2
\end{array}\right]=1
$$

$$
\left[\begin{array}{l}
3 \\
0
\end{array}\right]=1 \quad\left[\begin{array}{l}
3 \\
1
\end{array}\right]=3 \quad\left[\begin{array}{l}
3 \\
2
\end{array}\right]=3 \quad\left[\begin{array}{l}
3 \\
3
\end{array}\right]=1
$$

- Al-Karaji, Baghdad 953-1029
- Chu Shin-Chieh 1303
- Blaise Pascal 1654

Pascal's Triangle

$$
\left.\begin{array}{lllllllll}
\text { "It is extraordinary } \\
\text { how fertile in } \\
\text { properties the } \\
\text { triangle is. }
\end{array}\right)
$$

Summing the Rows

$$
\begin{aligned}
& 2^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] \begin{array}{cc}
1 & =1 \\
1+1 & =2
\end{array} \\
& 1+2+1 \\
& =4 \\
& 1+3+3+1=8 \\
& 1+4+6+4+1=16 \\
& 1+5+10+10+5+1=32 \\
& 1+6+15+20+15+6+1=64
\end{aligned}
$$

Odds and Evens

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array} \\
& \text { (1) (ㄷ) (1) (2) (ㄷ) (8) (1) } \\
& 1+15+15+1=6+20+6
\end{aligned}
$$

Summing on $1^{\text {st }}$ Avenue

Summing on $\boldsymbol{k}^{\text {th }}$ Avenue

Fibonacci Numbers

Sums of Squares

Al-Karaji Squares

$$
\begin{aligned}
& 1 \\
& 11 \\
& \text { = } 1 \\
& 12+2 \cdot 1=4 \\
& 13+2 \cdot 3 \\
& 14+2 \cdot 641=16 \\
& 1 \begin{array}{llllll}
5 & +2 \cdot 10 & 10 & 5 & 1 & =25
\end{array} \\
& 16+2.15 \quad 20 \quad 15 \quad 6 \quad 1=36
\end{aligned}
$$

Pascal Mod 2

All these properties can be proved inductively and algebraically. We will give combinatorial proofs using the
Manhattan block walking representation of binomial coefficients

How many shortest routes from A to B ?

Manhattan

There are $\left[\begin{array}{c}j+k \\ k\end{array}\right]$ shortest routes from $(0,0)$ to (j, k)

Manhattan

There are $\left[\begin{array}{l}n \\ k\end{array}\right]$ shortest routes from $(0,0)$ to $(n-k, k)$

Manhattan

There are $\left[\begin{array}{l}n \\ k\end{array}\right]$ shortest routes from $(0,0)$ to level n and $k^{\text {th }}$ avenue

Level n
 0

 $$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\left[\begin{array}{c} 2 n \\ n \end{array}\right)
$$

Vector Programs

Let's define a (parallel) programming language called VECTOR that operates on possibly infinite vectors of numbers. Each variable $\mathrm{V} \rightarrow$ can be thought of as:

$$
<*, *, *, *, *, *, \ldots\rangle
$$

Vector Programs

Let k stand for a scalar constant
<k> will stand for the vector <k,0,0,0,...>

$$
\begin{aligned}
& <0\rangle=\langle 0,0,0,0, \ldots\rangle \\
& \langle 1\rangle=\langle 1,0,0,0, \ldots\rangle
\end{aligned}
$$

$\mathrm{V} \rightarrow+\mathrm{T} \rightarrow$ means to add the vectors position-wise
$<4,2,3, \ldots\rangle+\langle 5,1,1, \ldots\rangle=.<9,3,4, \ldots\rangle$

Vector Programs

RIGHT(V \rightarrow) means to shift every number in $\mathrm{V} \rightarrow$ one position to the right and to place a 0 in position 0
$\operatorname{RIGHT}(<1,2,3, \ldots>)=<0,1,2,3, \ldots>$

Vector Programs

Example:
V \rightarrow := <6>;
V \rightarrow := RIGHT($\mathrm{V} \rightarrow$) + <42>;
V \rightarrow := RIGHT(\rightarrow) + <2>;
V \rightarrow := RIGHT($\mathrm{V} \rightarrow$) + <13>;

Store:
V $\rightarrow=<6,0,0,0, \ldots>$
$\vee \rightarrow=\langle 42,6,0,0, \ldots\rangle$
$\mathrm{V} \rightarrow=<2,42,6,0, \ldots\rangle$
$\mathrm{V} \rightarrow=<13,2,42,6, \ldots\rangle$

$$
V \rightarrow=<13,2,42,6,0,0,0, \ldots\rangle
$$

Vector Programs

Example:
V \rightarrow := <1>;
Loop n times
V \rightarrow := $\mathbf{V} \rightarrow+$ RIGHT($\mathrm{V} \rightarrow$;

Store:

$$
\begin{aligned}
& \mathrm{V} \rightarrow=\langle 1,0,0,0, \ldots\rangle \\
& \mathrm{V} \rightarrow=\langle 1,1,0,0, \ldots\rangle \\
& \mathrm{V} \rightarrow=\langle 1,2,1,0, \ldots\rangle \\
& \mathrm{V} \rightarrow=\langle 1,3,3,1, \ldots\rangle
\end{aligned}
$$

$\mathbf{V} \rightarrow=\mathrm{n}^{\text {th }}$ row of Pascal's triangle

$$
\begin{aligned}
& x^{2} X^{1}+3^{2} X^{2}+{ }_{3}^{3} X^{3} \\
& \begin{array}{l}
\text { Vector programs can } \\
\text { be implemented by } \\
\text { polynomials! }
\end{array} \\
& \text { g }
\end{aligned}
$$

Programs \rightarrow Polynomials

The vector $\mathrm{V} \rightarrow=<\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots>$ will be represented by the polynomial:

$$
P_{v}=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

Formal Power Series

The vector $\mathrm{V} \rightarrow=<\mathrm{a}_{0}, \mathrm{a}_{1}, a_{2}, \ldots>$ will be represented by the formal power series:

$$
P_{v}=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

$$
\begin{gathered}
V \rightarrow=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle \\
P_{v}=\sum_{i=0}^{\infty} a_{i} x^{i}
\end{gathered}
$$

$<0>$ is represented by
$<k>$ is represented by
k
$\mathrm{V} \rightarrow+\mathrm{T} \rightarrow$ is represented by
$\left(P_{V}+P_{T}\right)$
RIGHT($\mathrm{V} \rightarrow$) is represented by

Vector Programs

Example:
V \rightarrow := <1>;

$$
P_{v}:=1 ;
$$

Loop n times
$\mathrm{V} \rightarrow:=\mathrm{V} \rightarrow+\mathrm{RIGHT}(\mathrm{V} \cdot$);

$$
P_{v}:=P_{v}+P_{v} x ;
$$

$\mathbf{V} \rightarrow=n^{\text {th }}$ row of Pascal's triangle

Vector Programs

Example:
V \rightarrow := <1>;

$$
P_{v}:=1 ;
$$

Loop n times
$\mathbf{V} \rightarrow:=\mathbf{V} \rightarrow+$ RIGHT(V');

$$
P_{v}:=P_{v}(1+X) ;
$$

$\mathrm{V} \rightarrow=\mathrm{n}^{\text {th }}$ row of Pascal's triangle

Vector Programs

Example:
V \rightarrow := <1>;
Loop n times
$\mathbf{V} \rightarrow:=\mathrm{V} \rightarrow+\mathrm{RIGHT}(\mathrm{V} \cdot)$;

$\mathrm{V} \rightarrow=\mathrm{n}^{\text {th }}$ row of Pascal's triangle

- Polynomials count
- Binomial formula
- Combinatorial proofs of binomial identities

Here's What
You Need to Know...

- Vector programs

