15-251

Great Theoretical Ideas in Computer Science

Counting III

Lecture 8 (September 20, 2007)

Arrange n symbols: r_1 of type 1, r_2 of type 2, ..., r_k of type k

$$\begin{pmatrix} \mathbf{n} \\ \mathbf{r}_1 \end{pmatrix} \begin{pmatrix} \mathbf{n} - \mathbf{r}_1 \\ \mathbf{r}_2 \end{pmatrix} \dots \begin{pmatrix} \mathbf{n} - \mathbf{r}_1 - \mathbf{r}_2 - \dots - \mathbf{r}_{k-1} \\ \mathbf{r}_k \end{pmatrix}$$

$$= \frac{n!}{(n-r_1)!} \frac{(n-r_1)!}{(n-r_1-r_2)!r_2!} \dots$$

$$= \frac{n!}{r_1!r_2! \dots r_k!}$$

CARNEGIEMELLON

$$\frac{14!}{2!3!2!} = 3,632,428,800$$

5 distinct pirates want to divide 20 identical, indivisible bars of gold. How many different ways can they divide up the loot?

How many different ways to divide up the loot?

Sequences with 20 G's and 4 l's

How many different ways can n distinct pirates divide k identical, indivisible bars of gold?

How many integer solutions to the following equations?

$$x_1 + x_2 + x_3 + ... + x_n = k$$

 $x_1, x_2, x_3, ..., x_n \ge 0$

Identical/Distinct Dice

Suppose that we roll seven dice

How many different outcomes are there, if order matters?

67

What if order doesn't matter? (E.g., Yahtzee)

 12

 7

(Corresponds to 6 pirates and 7 bars of gold)

Identical/Distinct Objects

If we are putting k objects into n distinct bins.

Objects are distinguishable	n ^k
Objects are indistinguishable	(k+n-1) k

The Binomial Formula

binomial expression

Power Series Representation

"Power Series" or "Taylor Series" Expansion

By playing these two representations against each other we obtain a new representation of a previous insight:

$$(1+X)^{n} = \sum_{k=0}^{n} \binom{n}{k} X^{k}$$

Let x = 1,
$$2^n = \sum_{k=0}^n {n \choose k}$$

The number of subsets of an n-element set

By varying x, we can discover new identities:

$$(1+X)^n = \sum_{k=0}^n \binom{n}{k} X^k$$

Let x = -1,
$$0 = \sum_{k=0}^{n} {n \choose k} (-1)^k$$

Equivalently,
$$\sum_{k \text{ odd}} {n \choose k} = \sum_{k \text{ even}} {n \choose k}$$

The number of subsets with even size is the same as the number of subsets with odd size

$$(1+X)^{n} = \sum_{k=0}^{n} \binom{n}{k} X^{k}$$

$$\sum_{k \text{ odd}}^{n} {n \choose k} = \sum_{k \text{ even}}^{n} {n \choose k}$$

Let O_n be the set of binary strings of length n with an odd number of ones.

Let E_n be the set of binary strings of the length n with an even number of ones.

We just saw an algebraic proof that $|O_n| = |E_n|$

A Combinatorial Proof

Let O_n be the set of binary strings of length n with an odd number of ones

Let E_n be the set of binary strings of length n with an even number of ones

A combinatorial proof must construct a bijection between O_n and E_n

An Attempt at a Bijection

Let f_n be the function that takes an n-bit string and flips all its bits

f_n is clearly a one-toone and onto function

for odd n. E.g. in f₇ we have:

 $0010011 \rightarrow 1101100$ $1001101 \rightarrow 0110010$

...but do even n work? In f₆ we have

 $110011 \rightarrow 001100$ $101010 \rightarrow 010101$

Uh oh. Complementing maps evens to evens!

A Correspondence That Works for all n

Let f_n be the function that takes an n-bit string and flips only the first bit. For example,

 $0010011 \rightarrow 1010011$

 $1001101 \rightarrow 0001101$

 $110011 \rightarrow 010011$

101010 → 001010

$$(1+X)^{n} = \sum_{k=0}^{n} {n \choose k} X^{k}$$

Set of all k-subsets of {1..n}

Either we do not pick n: then we have to pick k elements out of the remaining n-1.

Or we do pick n: then we have to pick k-1 elts. out of the remaining n-1.

The Binomial Formula

$$(1+X)^{0} = 1$$

$$(1+X)^{1} = 1 + 1X$$

$$(1+X)^{2} = 1 + 2X + 1X^{2}$$

$$(1+X)^{3} = 1 + 3X + 3X^{2} + 1X^{3}$$

$$(1+X)^{4} = 1 + 4X + 6X^{2} + 4X^{3} + 1X^{4}$$

Pascal's Triangle: kth row are coefficients of (1+X)k

Inductive definition of kth entry of nth row: Pascal(n,0) = Pascal (n,n) = 1; Pascal(n,k) = Pascal(n-1,k-1) + Pascal(n-1,k)

"Pascal's Triangle"

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1$$

$$\begin{bmatrix} 2 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \qquad \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 1$$

$$\begin{bmatrix} 3 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 3 \qquad \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 3 \qquad \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 1$$

- Al-Karaji, Baghdad 953-1029
- Chu Shin-Chieh 1303
- Blaise Pascal 1654

Pascal's Triangle

Summing the Rows

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} \qquad 1 \qquad = 1$$

$$1 + 1 \qquad = 2$$

$$1 + 2 + 1 \qquad = 4$$

$$1 + 3 + 3 + 1 \qquad = 8$$

$$1 + 4 + 6 + 4 + 1 \qquad = 16$$

$$1 + 5 + 10 + 10 + 5 + 1 \qquad = 32$$

$$1 + 6 + 15 + 20 + 15 + 6 + 1 \qquad = 64$$

Odds and Evens

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 + 15 + 15 + 1 =
$$6 + 20 + 6$$

Summing on 1st Avenue

Summing on kth Avenue

Fibonacci Numbers

Sums of Squares

Al-Karaji Squares

```
2 +2.1
   3 +2·3 1
 4 +2·6
        4
               = 16
 5 +2·10 10
                    = 25
6 +2·15 20
          15 6 1
                    = 36
```

Pascal Mod 2

How many shortest routes from A to B?

Manhattan

There are $\binom{j+k}{k}$ shortest routes from (0,0) to (j,k)

Manhattan

There are $\binom{n}{k}$ shortest routes from (0,0) to (n-k,k)

Manhattan

$$\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} + \begin{pmatrix} n-1 \\ k \end{pmatrix}$$

Let's define a (parallel) programming language called VECTOR that operates on possibly infinite vectors of numbers. Each variable V→ can be thought of as:

Let k stand for a scalar constant

<k> will stand for the vector <k,0,0,0,...>

V→ + T→ means to add the vectors position-wise

RIGHT($V\rightarrow$) means to shift every number in $V\rightarrow$ one position to the right and to place a 0 in position 0

RIGHT(
$$<1,2,3,...>$$
) = $<0,1,2,3,...>$

Example:

V→ := <6>;

$$V^{\rightarrow} := RIGHT(V^{\rightarrow}) + <42>; V^{\rightarrow} = <42,6,0,0,...>$$

$$V^{\rightarrow} := RIGHT(V^{\rightarrow}) + <2>; V^{\rightarrow} = <2,42,6,0,...>$$

$$V^{\rightarrow} := RIGHT(V^{\rightarrow}) + <13>; V^{\rightarrow} = <13,2,42,6,...>$$

Store:

$$V^{\rightarrow} = <6,0,0,0,...>$$

$$V^{\rightarrow} = \langle 42, 6, 0, 0, ... \rangle$$

$$V^{\rightarrow} = \langle 2, 42, 6, 0, ... \rangle$$

$$V^{\rightarrow} = < 13, 2, 42, 6, 0, 0, 0, ... >$$

Example:

Loop n times

$$V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^{\rightarrow}); \qquad V^{\rightarrow} = <1,3,3,1,...>$$

Store:

$$V^{\rightarrow} = <1,0,0,0,...>$$

$$V^{\rightarrow} = <1,1,0,0,...>$$

$$V^{\rightarrow} = <1,2,1,0,...>$$

$$V \rightarrow = <1,3,3,1,...>$$

Vector programs can be implemented by polynomials!

Programs → **Polynomials**

The vector $V^{\rightarrow} = \langle a_0, a_1, a_2, ... \rangle$ will be represented by the polynomial:

$$P_V = \sum_{i=0}^{\infty} a_i X^i$$

Formal Power Series

The vector $V^{\rightarrow} = \langle a_0, a_1, a_2, ... \rangle$ will be represented by the formal power series:

$$P_V = \sum_{i=0}^{\infty} a_i X^i$$

$$V^{\rightarrow} = < a_0, a_1, a_2, ... >$$

$$P_V = \sum_{i=0}^{\infty} a_i X^i$$

$$V \rightarrow + T \rightarrow$$
 is represented by $(P_V + P_T)$

RIGHT(
$$V^{\rightarrow}$$
) is represented by ($P_V X$)

Example:

$$P_{V} := 1;$$

$$P_V := P_V + P_V X;$$

Example:

$$P_{V} := 1;$$

$$\mathsf{P}_\mathsf{V} := \mathsf{P}_\mathsf{V}(\mathsf{1+X});$$

Example:

$$V^{\rightarrow} := <1>;$$
Loop n times
 $V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^!);$

Here's What You Need to Know... Polynomials count

• Binomial formula

 Combinatorial proofs of binomial identities

Vector programs