15-251

Great Theoretical Ideas in Computer Science

Counting II:

Recurring Problems and

 CorrespondencesLecture 8 (February 8, 2007)

$(x+8+6)(x+\lambda)=?$

1-1 onto Correspondence

(just "correspondence" for short)

Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size

If a finite set \mathbf{A} has a k-to-1
 correspondence to finite set B, then $|B|=|A| / k$

The number of subsets of an n-element set is 2^{n}.

A choice tree provides a "choice tree representation" of a set S, if

1. Each leaf label is in S, and each element of S is some leaf label
2. No two leaf labels are the same

Sometimes it is easiest to count the number of objects with property \mathbf{Q}, by counting the number of objects that do not have property \mathbf{Q}.

The number of subsets of size r that can be formed from an n-element set is:

$$
\frac{n!}{r!(n-r)!}=\binom{n}{r}
$$

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P_{1} possibilities for the first choice, P_{2} for the second, and so on.
IF 1. Each sequence of choices constructs an object of type S

AND
2. No two different sequences create the same object

THEN
There are $P_{1} P_{2} P_{3} \ldots P_{n}$ objects of type S

How Many Different Orderings of Deck With 52 Cards?

What object are we making? Ordering of a deck
Construct an ordering of a deck by a sequence of 52 choices:
52 possible choices for the first card;
51 possible choices for the second card;

1 possible choice for the $52^{\text {nd }}$ card.
By product rule: $52 \times 51 \times 50 \times \ldots \times 2 \times 1=52$!

The Sleuth's Criterion

There should be a unique way to create an object in S.

In other words:
For any object in S , it should be possible to reconstruct the (unique) sequence of choices which lead to it.

The three big mistakes people make in associating a choice tree with a set S are:

1. Creating objects not in S
2. Missing out some objects from the set S
3. Creating the same object two different ways

Inclusion-Exclusion

If A and B are two finite sets, what is the size of $(A \cup B)$?

$$
|A|+|B|-|A \cap B|
$$

Inclusion-Exclusion

If A, B, C are three finite sets, what is the size of $(A \cup B \cup C)$?

$$
\begin{aligned}
& |A|+|B|+|C| \\
& \quad-|A \cap B|-|A \cap C|-|B \cap C| \\
& \quad+|A \cap B \cap C|
\end{aligned}
$$

Inclusion-Exclusion

If $A_{1}, A_{2}, \ldots, A_{n}$ are n finite sets, what is the size of $\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)$?

$$
\begin{aligned}
& \Sigma_{i}\left|A_{i}\right| \\
& \quad-\sum_{i<j}\left|A_{i} \cap A_{j}\right| \\
& \quad+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& \quad \cdots \\
& \quad+(-1)^{n-1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Let's use our principles to extend our reasoning to different types of objects

Counting Poker Hands

52 Card Deck, 5 card hands

4 possible suits:

```
v>30,
```

13 possible ranks:
2,3,4,5,6,7,8,9,10,J,Q,K,A

Pair: set of two cards of the same rank Straight: 5 cards of consecutive rank Flush: set of 5 cards with the same suit

Ranked Poker Hands

Straight Flush: a straight and a flush
4 of a kind: 4 cards of the same rank
Full House: 3 of one kind and 2 of another
Flush: a flush, but not a straight
Straight: a straight, but not a flush
3 of a kind: 3 of the same rank, but not a full house or 4 of a kind

2 Pair: 2 pairs, but not 4 of a kind or a full house
A Pair

Straight Flush

9 choices for rank of lowest card at the start of the straight

4 possible suits for the flush
$9 \times 4=36$
$\frac{36}{\binom{52}{5}}=\frac{36}{2,598,960}=1$ in $72,193.333 \ldots$

4 of a Kind

13 choices of rank
48 choices for remaining card
$13 \times 48=624$
$\frac{624}{\left(\begin{array}{c}52 \\ 5\end{array}\right]}=\frac{624}{2,598,960}=1$ in 4,165

Flush

4 choices of suit
$\left[\begin{array}{c}13 \\ 5\end{array}\right]$ choices of cards
"but not a straight flush..."
$\} \begin{array}{r}4 \times 1287 \\ =5148\end{array}$

- 36 straight flushes

5112 flushes

5,112
$\binom{52}{5}$

Straight

9 choices of lowest card
4^{5} choices of suits for 5 cards
"but not a straight flush..."

$$
\} \begin{array}{r}
9 \times 1024 \\
=9216
\end{array}
$$

- 36 straight flushes

9180 flushes

9,180
$\binom{52}{5}$

Ranking

Straight Flush
4-of-a-kind
Full House
Flush
Straight
3-of-a-kind
2-pairs
A pair
Nothing

36
624
3,744
5,112
9,180
54,912
123,552
1,098,240
1,302,540

I want to store a 5 card poker hand using the smallest number of bits (space efficient)

Order the 2,598,560 Poker Hands Lexicographically (or in any fixed way)

To store a hand all I need is to store its index of size $\left\lceil\log _{2}(2,598,560)\right\rceil=22$ bits

Hand 0000000000000000000000 Hand 0000000000000000000001 Hand 0000000000000000000010

22 Bits is OPTIMAL

$2^{21}=2,097,152<2,598,560$
Thus there are more poker hands than there are 21-bit strings

Hence, you can't have a 21-bit string for each hand

Binary (Boolean) Choice Tree

A binary (Boolean) choice tree is a choice tree where each internal node has degree 2

Usually the choices are labeled 0 and 1

22 Bits is OPTIMAL

$2^{21}=2,097,152<2,598,560$
A binary choice tree of depth 21 can have at most $\mathbf{2}^{21}$ leaves.

Hence, there are not enough leaves for all 5-card hands.

An n-element set can be stored so that each element uses $\left\lceil\log _{2}(n)\right\rceil$ bits

Furthermore, any representation of the set will have some string of at least that length

Information Counting

 Principle:If each element of a set can be represented using k bits, the size of the set is bounded by 2^{k}

Information Counting Principle:

Let S be a set represented by a depth-k binary choice tree, the size of the set is bounded by 2^{k}

ONGOING MEDITATION:

Let S be any set and T be a binary choice tree representation of \mathbf{S}

Think of each element of S being encoded by binary sequences of choices that lead to its leaf

We can also start with a binary encoding of a set and make a corresponding binary choice tree

Now, for something completely different...

How many ways to rearrange the letters in the word "SYSTEMS"?

SYSTEMS

7 places to put the Y,
6 places to put the T, 5 places to put the E,
4 places to put the M, and the S's are forced
$7 \times 6 \times 5 \times 4=840$

SYSTEMS

Let's pretend that the S's are distinct: $\mathrm{S}_{1} \mathrm{YS}_{2} \mathrm{TEMS}_{3}$

There are 7! permutations of $\mathrm{S}_{1} \mathrm{YS}_{2} \mathrm{TEMS}_{3}$
But when we stop pretending we see that we have counted each arrangement of SYSTEMS 3! times, once for each of 3! rearrangements of $\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3}$

$$
\frac{7!}{3!}=840
$$

Arrange n symbols: r_{1} of type 1 ,

 r_{2} of type $2, \ldots, r_{k}$ of type $k$$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{l}
n \\
r_{1}
\end{array}\right]}
\end{array}\right]\left[\begin{array}{c}
n-r_{1} \\
r_{2}
\end{array}\right] \ldots\left[\begin{array}{c}
n-r_{1}-r_{2}-\ldots-r_{k-1} \\
r_{k}
\end{array}\right]\right) \text { } \begin{aligned}
\left(n-r_{1}\right)!r_{1}! & \frac{\left(n-r_{1}\right)!}{\left(n-r_{1}-r_{2}\right)!r_{2}!} \cdots \\
& =\frac{n!}{r_{1}!r_{2}!\ldots r_{k}!}
\end{aligned}
$$

CARNEGIEMELLON

$$
\frac{14!}{2!3!2!}=3,632,428,800
$$

Remember:

The number of ways to arrange n symbols with r_{1} of type 1, r_{2} of type 2,
\ldots, r_{k} of type k is: n!

$$
r_{1}!r_{2}!\ldots r_{k}!
$$

Sequences with 20 G's and 4 /'s

GG/G//GGGGGGGGGGGGGGGGG/

represents the following division among the pirates: $2,1,0,17,0$

In general, the ith pirate gets the number of G's after the i-1st / and before the ith /

This gives a correspondence between divisions of the gold and sequences with 20 G's and 4 /'s

How many different ways to divide up the loot?

Sequences with 20 G's and 4 /'s

$$
\binom{24}{4}
$$

How many different ways can n distinct pirates divide k identical, indivisible bars of gold?
 $$
\binom{n+k-1}{n-1}=\binom{n+k-1}{k}
$$

How many integer solutions to the following equations?

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{aligned}
$$

Think of x_{k} are being the number of gold bars that are allotted to pirate k

How many integer solutions to the following equations?

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+\ldots+x_{n}=k \\
x_{1}, x_{2}, x_{3}, \ldots, x_{n} \geq 0 \\
\binom{n+k-1}{n-1}=\binom{n+k-1}{k}
\end{gathered}
$$

Identical/Distinct Dice

Suppose that we roll seven dice

How many different outcomes are there, if order matters?

What if order doesn't matter?

Back to the Pirates

How many ways are there of choosing 20 pirates from a set of

5 distinct pirates, with repetitions allowed?

$$
\left[\begin{array}{c}
5+20-1 \\
20
\end{array}\right]=\left[\begin{array}{l}
24 \\
20
\end{array}\right)=\left[\begin{array}{c}
24 \\
4
\end{array}\right]
$$

Multisets

A multiset is a set of elements, each of which has a multiplicity

The size of the multiset is the sum of the multiplicities of all the elements

Example:
$\{X, Y, Z\}$ with $m(X)=0 \quad m(Y)=3, m(Z)=2$
Unary visualization: $\{\mathbf{Y}, \mathrm{Y}, \mathrm{Y}, \mathrm{Z}, \mathrm{Z}\}$

Counting Multisets

There number of ways to choose a multiset of size k from n types of elements is:

$$
\left[\begin{array}{c}
n+k-1 \\
n-1
\end{array}\right]=\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right)
$$

Polynomials Express Choices and Outcomes

Products of Sum = Sums of Products

$\left(b^{1}+b^{2}+b^{3}\right)\left(t^{1}+t^{2}\right)=b^{1} t^{1}+b^{1} t^{2}+b^{2} t^{1}+b^{2} t^{2}+b^{3} t^{1}+b^{3} t^{2}$

Choice Tree for Terms of $(1+X)^{3}$

Combine like terms to get $1+3 X+3 X^{2}+X 3$

What is a Closed Form Expression For c_{k} ?

$$
\begin{gathered}
(1+X)^{n}=c_{0}+c_{1} X+c_{2} X^{2}+\ldots+c_{n} X^{n} \\
(1+X)(1+X)(1+X)(1+X) \ldots(1+X)
\end{gathered}
$$

After multiplying things out, but before combining like terms, we get 2^{n} cross terms, each corresponding to a path in the choice tree
c_{k}, the coefficient of X^{k}, is the number of paths with exactly k X's

$$
c_{k}=\binom{n}{k}
$$

The Binomial Formula

$(1+X)^{n}=\left[\begin{array}{l}n \\ 0\end{array}\right] x^{0}+\left[\begin{array}{l}n \\ 1\end{array}\right] x^{1}+\ldots+\left[\begin{array}{l}n \\ n\end{array}\right] x^{n}$
Binomial Coefficients
binomial expression

The Binomial Formula

$$
\begin{array}{lc}
(1+X)^{0}= & 1 \\
(1+X)^{1}= & 1+1 X \\
(1+X)^{2}= & 1+2 X+1 X^{2} \\
(1+X)^{3}= & 1+3 X+3 X^{2}+1 X^{3} \\
(1+X)^{4}= & 1+4 X+6 X^{2}+4 X^{3}+1 X^{4}
\end{array}
$$

The Binomial Formula

$$
\begin{aligned}
(X+Y)^{n}= & {\left[\begin{array}{l}
n \\
0
\end{array}\right) X^{n} Y^{0}+\left[\begin{array}{l}
n \\
1
\end{array}\right] X^{n-1} Y^{1} } \\
& +\ldots+\binom{n}{k} X^{n-k} Y^{k}+\ldots+\binom{n}{n} X^{0} Y^{n}
\end{aligned}
$$

The Binomial Formula

$$
(X+Y)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] X^{n-k Y^{k}}
$$

What is the coefficient of ($X_{1}{ }^{r_{1}} X_{2}{ }^{r_{2}} \ldots X_{k}{ }^{{ }^{k}}$) in the expansion of $\left(X_{1}+X_{2}+X_{3}+\ldots+X_{k}\right)^{n}$?

n!

$r_{1}!r_{2}!\ldots r_{k}!$

There is much, much more to be said about how polynomials encode counting questions!

Here's What
You Need to Know...

Inclusion-Exclusion

Counting Poker Hands

Number of rearrangements

Pirates and Gold Counting Multisets

Binomial Formula

