15-251

Great Theoretical Ideas in Computer Science

Counting I: One-To-One Correspondence and Choice Trees

Lecture 6 (September 13, 2007)

If I have 14 teeth on the top and 12 teeth on the bottom, how many teeth do I have in all?

Addition Rule

Let A and B be two disjoint finite sets

The size of $(A \cup B)$ is the sum of the size of A and the size of B

$$
|A \cup B|=|A|+|B|
$$

Addition Rule (2 possibly overlapping sets)

Inclusion Exchain

Addition of multiple disjoint sets:

Let $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ be disjoint, finite sets.

$$
\left|\bigcup_{i=1}^{n} \boldsymbol{A}_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right|
$$

Partition Method

To count the elements of a finite set S , partition the elements into non-overlapping subsets $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$.
$|s|=$

Partition Method

S = all possible outcomes of one white die and one black die.

Partition Method

S = all possible outcomes of one white die and one black die.

Partition S into 6 sets:

$A_{1}=$ the set of outcomes where the white die is 1.
$A_{2}=$ the set of outcomes where the white die is 2.
$A_{3}=$ the set of outcomes where the white die is 3.
$A_{4}=$ the set of outcomes where the white die is 4.
$A_{5}=$ the set of outcomes where the white die is 5 .
$A_{6}=$ the set of outcomes where the white die is 6.

Each of 6 disjoint set have size $6=36$ outcomes

Partition Method

$\mathrm{S}=$ all possible outcomes where the white die and the black die) have different values

S \equiv Set of all outcomes where the dice show different values. $|\mathbf{S}|=$?

$\mathrm{A}_{\mathrm{i}} \equiv$ set of outcomes where black die says i and the white die says something else.

$$
|S|=\left|\bigcup_{i=1}^{6} A_{i}\right|=\sum_{i=1}^{6}\left|A_{i}\right|=\sum_{i=1}^{6} 5=30
$$

S \equiv Set of all outcomes where the dice show different values. $|\mathbf{S}|=$?

T \equiv set of outcomes where dice agree. $=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 4,4\rangle,\langle 5,5\rangle,\langle 6,6\rangle\}$

$$
\begin{aligned}
& |S \cup T|=\# \text { of outcomes = } 36 \\
& |S|+|T|=36 \\
& |T|=6 \\
& |S|=36-6=30
\end{aligned}
$$

S = Set of all outcomes where the black die shows a smaller number than the white die. $|\mathbf{S}|=$?

$\mathrm{A}_{\mathrm{i}}=$ set of outcomes where the black die says i and the white die says something larger.

$$
\begin{gathered}
S=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5} \cup A_{6} \\
|S|=5+4+3+2+1+0=15
\end{gathered}
$$

S = Set of all outcomes where the

 black die shows a smaller number than the white die. $|\mathbf{S}|=$?$\mathrm{L} \equiv$ set of all outcomes where the black die shows a larger number than the white die.

$$
|S|+|L|=30
$$

It is clear by symmetry that $|\mathrm{S}|=|\mathrm{L}|$.
Therefore |S |= 15

"It is clear by symmetry that $|\mathbf{S}|=\mid$ ㄴ|?"

Pinning Down the Idea of Symmetry by Exhibiting a Correspondence

Put each outcome in S in correspondence with an outcome in L by swapping color of the dice.

Each outcome in S gets matched with exactly one outcome in L, with none left over.

$$
\text { Thus: }|S|=|L|
$$

Let f: $\mathrm{A} \rightarrow \mathrm{B}$ Be a Function From a Set A to a Set B

f is 1-1 if and only if

$$
\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)
$$

f is onto if and only if

$$
\forall \mathbf{z} \in \mathbf{B} \quad \exists \mathbf{x} \in \mathbf{A} f(\mathrm{x})=\mathbf{z}
$$

There Exists
For Every

Let's Restrict Our Attention to

 Finite Sets

\exists onto $f: A \rightarrow B \Rightarrow|A| \geq|B|$

f being 1-1 onto means f^{-1} is well defined and unique
fis a way of pairing up elements

Correspondence Principle

 If two finite sets can be placed into 1-1 onto correspondence, then they have the same size

It's one of the most important mathematical ideas of all time!

Question: How many n-bit sequences are there?

000000	\leftrightarrow	0
000001	\leftrightarrow	1
000010	\leftrightarrow	2
000011	\leftrightarrow	3
$:$	$:$	$:$
111111	\leftrightarrow	2^{n-1}

Each sequence corresponds to a unique number from 0 to $2^{n}-1$. Hence 2^{n} sequences.

$A=\{a, b, c, d, e\}$ Has Many Subsets

 $\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{d}, \mathrm{e}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$, $\{\mathrm{e}\}, \varnothing, \ldots$The entire set and the empty set are subsets with all the rights and privileges pertaining thereto

Question: How Many Subsets Can Be Made From The Elements of a 5 -Element Set?

a	b	c	d	e
0	1	1	0	1

\{ bece \}
1 means "TAKE IT"
0 means "LEAVE IT"
Each subset corresponds to a 5 -bit sequence (using the "take it or leave it" code)
$A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$
$B=$ set of all n-bit strings

For bit string $b=b_{1} b_{2} b_{3} \ldots b_{n}$, let $f(b)=\left\{a_{i} \mid b_{i}=1\right\}$
Claim: f is 1-1
Any two distinct binary sequences b and b' have a position i at which they differ

Hence, $f(b)$ is not equal to $f\left(b^{\prime}\right)$ because they disagree on element a_{i}
$A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$
$B=$ set of all n-bit strings

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
b_{1}	b_{2}	b_{3}	b_{4}	b_{5}

For bit string $b=b_{1} b_{2} b_{3} \ldots b_{n}$, let $f(b)=\left\{a_{i} \mid b_{i}=1\right\}$
Claim: f is onto
Let S be a subset of $\left\{a_{1}, \ldots, a_{n}\right\}$.
Define $b_{k}=1$ if a_{k} in S and $b_{k}=0$ otherwise.
Note that $f\left(b_{1} b_{2} \ldots b_{n}\right)=S$.

The number of subsets of an n-element set is 2^{n}

Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ Be a Function From Set A to Set B

f is $1-1$ if and only if

$\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)$
f is onto if and only if
$\forall \mathbf{z} \in \mathbf{B} \quad \exists \mathbf{x} \in \mathbf{A}$ such that $\mathrm{f}(\mathrm{x})=\mathbf{z}$

Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ Be a Function From Set A to Set B

f is a 1-to-1 correspondence iff $\forall \mathbf{z} \in \mathbf{B} \exists$ exactly one $\mathbf{x} \in \mathbf{A}$ such that $f(x)=\mathbf{z}$
f is a k -to-1 correspondence iff
$\forall \mathbf{z} \in \mathbf{B} \quad \exists$ exactly $k x \in \mathbf{A}$ such that $f(x)=\mathbf{z}$

3 to 1 function

If a finite set \mathbf{A} has a k-to-1 correspondence to finite set B, then $|B|=|A| / k$

A Restaurant Has a Menu With 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts

How many items on the menu?

$$
5+6+3+7=21
$$

How many ways to choose a complete meal?

$$
5 \times 6 \times 3 \times 7=630
$$

How many ways to order a meal if I am allowed to skip some (or all) of the courses?

$$
6 \times 7 \times 4 \times 8=1344
$$

Hobson's Restaurant Has Only 1 Appetizer, 1 Entree, 1 Salad, and 1 Dessert

2^{4} ways to order a meal if I might not have some of the courses

Same as number of subsets of the set \{Appetizer, Entrée, Salad, Dessert\}

Choice Tree For $2^{n} n$-bit Sequences

We can use a "choice tree" to represent the construction of objects of the desired type

Choice Tree For $2^{n} n$-bit Sequences

Label each leaf with the object constructed by the choices along the path to the leaf

2 choices for first bit
$\times 2$ choices for second bit $\times 2$ choices for third bit
$\times 2$ choices for the $n^{\text {th }}$

Leaf Counting Lemma

Let T be a depth- n tree when each node at depth $0 \leq \mathrm{i} \leq \mathrm{n}-1$ has $\mathrm{P}_{\mathrm{i}+1}$ children

The number of leaves of T is given by:
$P_{1} P_{2} \ldots P_{n}$

Choice Tree

A choice tree is a rooted, directed tree with an object called a "choice" associated with each edge and a label on each leaf

A choice tree provides a "choice tree representation" of a set S, if

1. Each leaf label is in S, and each element of S is some leaf label
2. No two leaf labels are the same

Product Rule

IF set S has a choice tree representation with P_{1} possibilities for the first choice,
P_{2} for the second, P_{3} for the third, and so on,
THEN
there are $P_{1} P_{2} P_{3} \ldots P_{n}$ objects in S
Proof:
There are $P_{1} P_{2} P_{3} \ldots P_{n}$ leaves of the choice tree which are in 1-1 onto correspondence with the elements of S .

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P_{1} possibilities for the first choice, P_{2} for the second, and so on.
IF 1. Each sequence of choices constructs an object of type S

AND

2. No two different sequences create the same object and
THEN evey elocec an S muct be creeled
There are $P_{1} P_{2} P_{3} \ldots P_{n}$ objects of type S

How Many Different Orderings of Deck With 52 Cards?

What object are we making? Ordering of a deck
Construct an ordering of a deck by a sequence of 52 choices:
52 possible choices for the first card;
51 possible choices for the second card;

1 possible choice for the $52^{\text {nd }}$ card.
By product rule: $52 \times 51 \times 50 \times \ldots \times 2 \times 1=52$!

A permutation or arrangement of n objects is an ordering of the objects

The number of permutations of \boldsymbol{n} distinct objects is n !
 of the 7 positions)

How many sequences of 7 letters contain at least two of the same letter?

$26^{7}-26 \times 25 \times 24 \times 23 \times 22 \times 21 \times 20$

number of sequences containing all different letters

Sometimes it is easiest

 to count the number of objects with property Q, by counting the number of objects that do not have property \mathbf{Q}.
Helpful Advice:

In logic, it can be useful to represent a statement in the contra positive.

In counting, it can be useful to represent a set in terms of its complement.

If 10 horses race, how many orderings of the top three finishers are there?

$$
10 \times 9 \times 8=720
$$

Number of ways of ordering, permuting, or arranging r out of n objects
n choices for first place, n -1 choices for second place, . . .

$$
\begin{aligned}
n \times(n-1) & \times(n-2) \times \ldots \times(n-(r-1)) \\
& =\frac{n!}{(n-r)!}
\end{aligned}
$$

Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

$$
52 \times 51
$$

How many unordered pairs?

$$
52 \times 51 / 2 \leftarrow \text { divide by overcount }
$$

Each unordered pair is listed twice on a list of the ordered pairs

Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

$$
52 \times 51
$$

How many unordered pairs?

$$
52 \times 51 / 2 \leftarrow \text { divide by overcount }
$$

We have a 2-1 map from ordered pairs to unordered pairs.
Hence \#unordered pairs = (\#ordered pairs)/2

Ordered Versus Unordered

How many ordered 5 card sequences can be formed from a 52-card deck?

$$
52 \times 51 \times 50 \times 49 \times 48
$$

How many orderings of 5 cards? $5!$

How many unordered 5 card hands?

$$
(52 \times 51 \times 50 \times 49 \times 48) / 5!=2,598,960
$$

A combination or choice of r out of n objects is an (unordered) set of r of the n objects

The number of r combinations of n objects:

The number of subsets of size r that can be formed from an n-element set is:

$$
\frac{n!}{r!(n-r)!}=\binom{n}{r}
$$

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P_{1} possibilities for the first choice, P_{2} for the second, and so on.
IF 1. Each sequence of choices constructs an object of type S

AND
2. No two different sequences create the same object

THEN
There are $P_{1} P_{2} P_{3} \ldots P_{n}$ objects of type S

How Many 8-Bit Sequences Have 20 's and 61 's?

Tempting, but incorrect: 8 ways to place first 0 , times 7 ways to place second 0

Violates condition 2 of product rule!

Choosing position i for the first 0 and then position j for the second 0 gives same sequence as choosing position j for the first 0 and position i for the second 0

2 ways of generating same object!

How Many 8-Bit Sequences Have 20 's and 61 's?

1. Choose the set of 2 positions to put the 0 's. The 1 's are forced.
[这]
2. Choose the set of 6 positions to put the 1's. The 0's are forced.
(8)

Symmetry In The Formula

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}=\left[\begin{array}{c}
n \\
n-r
\end{array}\right)
$$

"\# of ways to pick r out of n elements"

$$
=
$$

"\# of ways to choose the (n-r) elements to omit"

How Many Hands Have at Least 3 As?

114560

$$
4704
$$

$$
11
$$

$$
\binom{4}{3}\binom{49}{2}
$$

$$
4 \cdot \frac{49.48}{2}=4.704
$$

$$
2496
$$

How Many Hands Have at Least 3 As?

$$
\begin{aligned}
& \binom{4}{3}=4 \text { ways of picking } 3 \text { out of } 4 \text { aces } \\
& \binom{49}{2}=\begin{array}{c}
1176 \text { ways of picking } 2 \text { cards out of } \\
\text { the remaining } 49 \text { cards }
\end{array} \\
& 4 \times 1176=4704
\end{aligned}
$$

How Many Hands Have at Least 3 As?

How many hands have exactly 3 aces?
$\left[\begin{array}{l}4 \\
3\end{array}\right]=4$ ways of picking 3 out of 4 aces
\(\left[\begin{array}{c}48

2\end{array}\right]=\)\begin{tabular}{r}
4

out of the 48 non-ace cards

$\times 1128$

4512
\end{tabular}

How many hands have exactly 4 aces?
$\left[\begin{array}{l}4 \\ 4\end{array}\right]=1$ way of picking 4 out of 4 aces
$\left[\begin{array}{c}48 \\ 1\end{array}\right]$
= 48 ways of picking 1 cards out of the 48 non-ace cards

4512
$+48$
4560

4704 \# 4560

At least one of the two counting arguments is not correct!

Four Different Sequences of

 Choices Produce the Same Hand$\left[\begin{array}{l}4 \\ 3\end{array}\right]=4$ ways of picking 3 out of 4 aces
$\left[\begin{array}{c}49 \\ 2\end{array}\right]=1176$ ways of picking 2 cards out of the remaining 49 cards

$$
A \leftrightarrow A>A>\quad A \leftrightarrow K \gg
$$

$$
A \& A \not A \cap \quad A \not P K
$$

$$
A \subset A \wedge A>\quad A \gtrdot K \diamond
$$

$$
\text { As } A>A P \quad \text { A\& } K
$$

Scheme I

1. Choose 3 of 4 aces
2. Choose 2 of the remaining cards
$A \& A>A>A \subset K \geqslant$
For this hard - you can't reverse to a unique choice sequence.

Acs A> Ar	A, K
Acs $A>A>$	APK
Acs As Ar	$A \subset K$
As A> A¢	Acs K

Scheme II

1. Choose 3 out of 4 aces
2. Choose 2 out of 48 non-ace cards

REVERSE TEST: Aces came from choices in (1) and others came from choices in (2)

Scheme II

1. Choose 4 out of 4 aces
2. Choose 1 out of 48 non-ace cards

$A c A>A \subset A \subset K$ •

REVERSE TEST: Aces came from choices in (1) and others came from choices in (2)

Product Rule (Rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P_{1} possibilities for the first choice, P_{2} for the second, and so on.
IF 1. Each sequence of choices constructs an object of type S

AND
2. No two different sequences create the same object

THEN
There are $P_{1} P_{2} P_{3} \ldots P_{n}$ objects of type S

Correspondence Principle

 If two finite sets can be placed into 1-1 onto correspondence, then they have the same size
Choice Tree

Product Rule two conditions

Reverse Test
Here's What
You Need to Know...

Counting by complementing
Binomial coefficient

