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Great Theoretical Ideas 

in Computer Science



Lecture 6 (September 13, 2007)

Counting I: One-To-One  
Correspondence 
and Choice Trees



If I have 14 teeth on the top and 12 
teeth on the bottom, how many 

teeth do I have in all?



A B A B∪ = +

Addition Rule

Let A and B be two disjoint finite sets

The size of (A ∪ B) is the sum of the size 
of A and the size of B



Addition Rule
(2 possibly overlapping sets)

Let A and B be two finite sets

|A∪B| = 
|A| + |B| - |A∩B|



Addition of multiple disjoint sets:

Let A1, A2, A3, …, An be disjoint, finite 
sets.
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Partition Method

To count the elements of a finite set S, partition the elements into 
non-overlapping subsets A1, A2, A3, …, An .. 

|s| =

A Ai i
i=1

n

i

n

=

=
1
U



S = all possible outcomes of one 
white die and one black die.

Partition Method



S = all possible outcomes of one 
white die and one black die.

Partition S into 6 sets:

Partition Method

A1 = the set of outcomes where the white die is 1.
A2 = the set of outcomes where the white die is 2. 
A3 = the set of outcomes where the white die is 3.
A4 = the set of outcomes where the white die is 4.
A5 = the set of outcomes where the white die is 5. 
A6 = the set of outcomes where the white die is 6.

Each of 6 disjoint set have size 6 = 36 outcomes



S = all possible outcomes where 
the white die and the black die 

have different values 

Partition Method



Ai ≡ set of outcomes where black die says i 
and the white die says something else.
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S ≡ Set of all outcomes where the 
dice show different values. ⎢S⎥ = ?



| S ∪ T | = # of outcomes = 36

|S| + |T| = 36

|T| = 6

|S| = 36 – 6 = 30

S ≡ Set of all outcomes where the 
dice show different values. ⎢S⎥ = ?

T ≡ set of outcomes where dice agree.
= { <1,1>, <2,2>, <3,3>,<4,4>,<5,5>,<6,6>}



S ≡ Set of all outcomes where the 
black die shows a smaller number 

than the white die. ⎢S⎥ = ?

Ai ≡ set of outcomes where the black die says 
i and the white die says something larger.

S = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6

|S| = 5 + 4 + 3 + 2 + 1 + 0 = 15



It is clear by symmetry that | S | = | L |.

⎢S⎥ + ⎢L⎥ = 30

Therefore | S | = 15

S ≡ Set of all outcomes where the 
black die shows a smaller number 

than the white die. ⎢S⎥ = ?

L ≡ set of all outcomes where the black die 
shows a larger number than the white die.



“It is clear by symmetry that |S| = |L|?”



S L

Pinning Down the Idea of Symmetry 
by Exhibiting a Correspondence

Put each outcome in S in correspondence with 
an outcome in L by swapping color of the dice.

Thus: ⎢S⎥ = ⎢L⎥

Each outcome in S gets matched with exactly 
one outcome in L, with none left over.



f is 1-1 if and only if
∀x,y∈A,  x ≠ y ⇒ f(x) ≠ f(y)

For Every

There 
Exists

f is onto if and only if
∀z∈B  ∃x∈A  f(x) = z

Let f : A → B Be a Function 
From a Set A to a Set B



A B

Let’s Restrict Our Attention to 
Finite Sets

∃ 1-1 f : A → B  ⇒ | A | ≤ | B |



AB

∃ onto f : A → B  ⇒ | A | ≥ | B |



A B

∃ 1-1 onto f : A → B  ⇒ | A | = | B |



f being 1-1 onto means f-1 is well 
defined and unique

f is a way of pairing up elements

A B



Correspondence Principle

If two finite sets can be placed 
into 1-1 onto correspondence, 
then they have the same size

It’s one of the 
most important 
mathematical 

ideas of all time!



Each sequence corresponds to a unique
number from 0 to 2n-1. Hence 2n sequences.

Question: How many n-bit 
sequences are there?
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111111 2n-1
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The entire set and the 
empty set are subsets with 
all the rights and privileges 

pertaining thereto

A = { a,b,c,d,e } Has Many Subsets

{a}, {a,b}, {a,d,e}, {a,b,c,d,e}, 
{e}, Ø, …



Question: How Many Subsets Can 
Be Made From The Elements of a 

5-Element Set?

{ b c e } 1 means “TAKE IT”
0 means “LEAVE IT”

a b c d e

0 1 1 0 1

Each subset corresponds to a 5-bit sequence  
(using the “take it or leave it” code)



For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1}

A = {a1, a2, a3,…, an}
B = set of all n-bit strings

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Claim: f is 1-1

Any two distinct binary sequences b and b′
have a position i at which they differ

Hence, f(b) is not equal to f(b′) because 
they disagree on element ai



For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1}

A = {a1, a2, a3,…, an}
B = set of all n-bit strings

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Let S be a subset of {a1,…,an}.
Define bk = 1 if ak in S and bk = 0 otherwise.

Note that f(b1b2…bn) = S.

Claim: f is onto



The number 
of subsets of 
an n-element 

set is 2n



Let f : A → B Be a Function From 
Set A to Set B

f is 1-1 if and only if 
∀x,y ∈ A,  x ≠ y ⇒ f(x) ≠ f(y)

f is onto if and only if 
∀z∈B  ∃x∈A such that f(x) = z



Let f : A → B Be a Function From 
Set A to Set B

f is a 1-to-1 correspondence iff
∀z∈B  ∃ exactly one x∈A such that f(x) = z

f is a k-to-1 correspondence iff
∀z∈B  ∃ exactly k x∈A such that f(x) = z

A
B

3 to 1 function



To count the number of horses in 
a barn, we can count the number 

of hoofs and then divide by 4



If a finite set A 
has a k-to-1 

correspondence 
to finite set B, 
then |B| = |A|/k



How many seats in 
this auditorium?

Count without Counting:
The auditorium can be
partitioned into n rows 

with k seats each

Thus, we have nk seats in the room



I own 3 beanies and 2 
ties. How many different 
ways can I dress up in a 

beanie and a tie?





A Restaurant Has a Menu With
5 Appetizers, 6 Entrees, 3 Salads, 

and 7 Desserts

How many items on the menu?

5 + 6 + 3 + 7 = 21

How many ways to choose a complete meal?

5 × 6 × 3 × 7   = 630

6 × 7 × 4 × 8 = 1344

How many ways to order a meal if I am 
allowed to skip some (or all) of the courses?



Hobson’s Restaurant Has 
Only 1 Appetizer, 1 Entree, 

1 Salad, and 1 Dessert

24 ways to order a meal if I might not 
have some of the courses

Same as number of subsets of the set
{Appetizer, Entrée, Salad, Dessert}



0 1 0 10 1 0 1

0 1 0 1

0 1

We can use a “choice tree” to represent the 
construction of objects of the desired type

Choice Tree For 2n n-bit Sequences



0 1 0 10 1 0 1

0 1 0 1

0 1

Choice Tree For 2n n-bit Sequences

Label each leaf with the object constructed 
by the choices along the path to the leaf

000 001 010 011 100 101 110 111



2 choices for first bit
× 2 choices for second bit
× 2 choices for third bit

: :
× 2 choices for the nth

0 1 0 10 1 0 1

0 1 0 1

0 1



Leaf Counting Lemma

Let T be a depth-n tree when each node at 
depth 0 ≤ i ≤ n-1 has Pi+1 children

The number of leaves of T is given by:
P1P2…Pn



Choice Tree

A choice tree is a rooted, directed tree with 
an object called a “choice” associated with 

each edge and a label on each leaf



A choice tree  provides a “choice tree 
representation” of a set S, if

1. Each leaf label is in S, and each 
element of S is some leaf label

2. No two leaf labels are the same



We will now 
combine the 

correspondence 
principle with the 

leaf counting lemma
to make a powerful 

counting rule for 
choice tree 

representation.



Product Rule
IF set S has a choice tree representation with 

P1 possibilities for the first choice, 
P2 for the second, P3 for the third,
and so on,

THEN
there are P1P2P3…Pn objects in S

Proof:

There are P1P2P3…Pn leaves of the choice tree
which are in 1-1 onto correspondence with the 
elements of S.



Product Rule (Rephrased)
Suppose every object of a set S can be 
constructed by a sequence of choices with P1
possibilities for the first choice, P2 for the 
second, and so on. 

IF 1. Each sequence of choices 
constructs an object of type S

2. No two different sequences create the
same object

There are P1P2P3…Pn objects of type S

AND

THEN



How Many Different Orderings 
of Deck With 52 Cards?

What object are we making? Ordering of a deck

Construct an ordering of a deck by a sequence Construct an ordering of a deck by a sequence 
of 52 choices:of 52 choices:
52 possible choices for the first card;
51 possible choices for the second card;

: :
1 possible choice for the 52nd card.

By product rule: 52 × 51 × 50 × … × 2 × 1 = 52!



A permutation or 
arrangement of n objects is 
an ordering of the objects

The number of permutations 
of n distinct objects is n!



267
(26 choices for each 

of the 7 positions)

How many sequences of 
7 letters are there?



How many sequences of 
7 letters contain at least
two of the same letter?

267 - 26×25×24×23×22×21×20

number of sequences containing 
all different letters



Sometimes it is easiest 
to count the number of 
objects with property Q, 
by counting the number 
of objects that do not 
have property Q.



Helpful Advice:

In logic, it can be useful to 
represent a statement in the 
contra positive.

In counting, it can be useful 
to represent a set in terms of 
its complement.



If 10 horses race, how many 
orderings of the top three 
finishers are there?

10 × 9 × 8 = 720



Number of ways of ordering, per-
muting, or arranging r out of n objects

n choices for first place, n-1 choices for 
second place, . . .

n × (n-1) × (n-2) ×…× (n-(r-1))

n!
(n-r)!

=





From a deck of 52 cards how many ordered 
pairs can be formed?

52 × 51

How many unordered pairs?How many unordered pairs?

52×51 / 2  divide by overcount

Each unordered pair is listed twice 
on a list of the ordered pairs

Ordered Versus Unordered



From a deck of 52 cards how many ordered 
pairs can be formed?

52 × 51

How many unordered pairs?How many unordered pairs?

52×51 / 2  divide by overcount

We have a 2-1 map from ordered pairs to 
unordered pairs.

Hence #unordered pairs = (#ordered pairs)/2

Ordered Versus Unordered



Ordered Versus Unordered

How many ordered 5 card sequences
can be formed from a 52-card deck?

52 × 51 × 50 × 49 × 48

How many orderings of 5 cards?

5!

How many unordered 5 card hands?

(52×51×50×49×48)/5!  = 2,598,960



n “choose” r

A combination or choice of r out 
of n objects is an (unordered) set 

of r of the n objects

The number of r combinations of n objects:

n!
r!(n-r)!

=
n
r



The number of subsets of 
size r that can be formed 
from an n-element set is:

n!
r!(n-r)!

=
n
r



Product Rule (Rephrased)
Suppose every object of a set S can be 
constructed by a sequence of choices with P1
possibilities for the first choice, P2 for the 
second, and so on. 

IF 1. Each sequence of choices 
constructs an object of type S

2. No two different sequences create the
same object

There are P1P2P3…Pn objects of type S

AND

THEN



Choosing position i for the first 0 and then Choosing position i for the first 0 and then 
position j for the second 0 gives same position j for the second 0 gives same 

sequence as choosing position j for the first 0 sequence as choosing position j for the first 0 
and position i for the second 0and position i for the second 0

2 ways of 
generating 

same object!

How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?

Tempting, but incorrect:
8 ways to place first 0, times
7 ways to place second 0

Violates condition 2 of product rule! 



How Many 8-Bit Sequences 
Have 2 0’s and 6 1’s?

1. Choose the set of 2 positions to put 
the 0’s. The 1’s are forced.

8
2

2. Choose the set of 6 positions to put the 
1’s. The 0’s are forced.

8
6



“# of ways to pick r out of n elements”
=

“# of ways to choose the (n-r) elements to omit”

Symmetry In The Formula

n!
r!(n-r)!

=
n

n-r
n
r

=



How Many Hands Have at Least 3 As?



4 × 1176 = 4704

4
3

49
2

= 4 ways of picking 3 out of 4 aces

= 1176 ways of picking 2 cards out of 
the remaining 49 cards

How Many Hands Have at Least 3 As?



= 1128 ways of picking 2 cards 
out of the 48 non-ace cards

4
× 1128

4512

4512
+ 48

4560

How Many Hands Have at Least 3 As?

How many hands have exactly 3 aces?

= 4 ways of picking 3 out of 4 aces4
3

48
2

How many hands have exactly 4 aces?

= 1 way of picking 4 out of 4 aces4
4

= 48 ways of picking 1 cards 
out of the 48 non-ace cards

48
1



4704 ≠ 4560
At least one of 

the two counting 
arguments is not 

correct!



A♣ A♦ A♥ A♠ K♦
A♣ A♦ A♠ A♥ K♦
A♣ A♠ A♥ A♦ K♦
A♠ A♦ A♥ A♣ K♦

Four Different Sequences of 
Choices Produce the Same Hand

= 4 ways of picking 3 out of 4 aces

= 1176 ways of picking 2 cards out of 
the remaining 49 cards

4
3

49
2



Is the other argument 
correct? How do I 

avoid fallacious 
reasoning?



REVERSIBILTY 
CHECK:

For each object can I 
reverse engineer the 
unique sequence of 

choices that 
constructed it?



A♣ A♦ A♥ A♠ K♦
A♣ A♦ A ♠ A♥ K♦
A♣ A♠ A♥ A♦ K♦
A♠ A♦ A♥ A♣ K♦

A♣ A♦ A♥A♠ K♦

Scheme I
1. Choose 3 of 4 aces
2. Choose 2 of the remaining cards

For this hard – you can’t reverse to a 
unique choice sequence.



Is the other argument 
correct? How do I 

avoid fallacious 
reasoning?



A♣ A♦ Q♦ A♠ K♦

Scheme II
1. Choose 3 out of 4 aces
2. Choose 2 out of 48 non-ace cards

REVERSE TEST: Aces came from choices in (1)
and others came from choices in (2)



A♣ A♦ A♥ A♠ K♦

Scheme II
1. Choose 4 out of 4 aces
2. Choose 1 out of 48 non-ace cards

REVERSE TEST: Aces came from choices in (1)
and others came from choices in (2)



Product Rule (Rephrased)
Suppose every object of a set S can be 
constructed by a sequence of choices with P1
possibilities for the first choice, P2 for the 
second, and so on. 

IF 1. Each sequence of choices 
constructs an object of type S

2. No two different sequences create the
same object

There are P1P2P3…Pn objects of type S

AND

THEN



DEFENSIVE THINKING
ask yourself:

Am I creating objects of 
the right type?

Can I reverse engineer 
my choice sequence 

from any given object?



Correspondence Principle
If two finite sets can be placed 
into 1-1 onto correspondence, 
then they have the same size

Choice Tree

Product Rule
two conditions

Reverse Test

Counting by complementing

Binomial coefficient

Here’s What 
You Need to 

Know…


