15-251

Great Theoretical Ideas in Computer Science

Dominoes

Dominoes Numbered 1 to \boldsymbol{n}

$F_{k}=$ "The $k^{\text {th }}$ domino falls"
If we set them up in a row then each one is set up to knock over the next:

For all $1 \leq k<n$:

$$
F_{k} \Rightarrow F_{k+1}
$$

$F_{1} \Rightarrow F_{2} \Rightarrow F_{3} \Rightarrow \ldots$
$F_{1} \Rightarrow$ All Dominoes Fall

Standard Notation

 "for all" is written "V"Example:
For all $k>0, P(k)=\quad \forall k>0, P(k)$

Dominoes Numbered 1 to \boldsymbol{n}

$F_{k}=$ "The $k^{\text {th }}$ domino falls"

$$
\begin{aligned}
\forall k, 0 \leq k & <n-1: \\
& F_{k} \Rightarrow F_{k+1}
\end{aligned}
$$

$F_{0} \Rightarrow F_{1} \Rightarrow F_{2} \Rightarrow \ldots$
$F_{0} \Rightarrow$ All Dominoes Fall

The Natural Numbers

$\mathbb{N}=\{0,1,2,3, \ldots\}$
One domino for each natural number:

Plato: The Domino Principle works for an infinite row of dominoes

Aristotle: Never seen an infinite number of anything, much less dominoes.

Plato's Dominoes One for each natural number

Theorem: An infinite row of dominoes, one domino for each natural number.

Knock over the first domino and they all will fall

Plato's Dominoes One for each natural number

Theorem: An infinite row of dominoes, one domino for each natural number.
Knock over the first domino and they all will fall

Proof:
Suppose they don't all fall. Let $\mathrm{k}>0$ be the lowest numbered domino that remains standing.
Domino $k-1 \geq 0$ did fall, but k - 1 will knock over domino k. Thus, domino k must fall and remain standing.
Contradiction.

Mathematical Induction statements proved instead of dominoes fallen

Infinite sequence of dominoes
$F_{k}=$ "domino k fell"

Infinite sequence of statements: $\mathbf{S}_{0}, \mathbf{S}_{1}, \ldots$
$F_{k}=$ " S_{k} proved"

Establish: 1. F_{0}
2. For all $k, F_{k} \Rightarrow F_{k+1}$

Conclude that F_{k} is true for all k

Inductive Proofs

To Prove $\forall k \in \mathbb{N}, \mathrm{~S}_{\mathrm{k}}$

Establish "Base Case": S_{0}
Establish that $\forall k, S_{k} \Rightarrow S_{k+1} \quad$ Induction thyp, X
\int Assume hypothetically that
$\forall k, S_{k} \Rightarrow S_{k+1} \quad\left\{S_{k}\right.$ for any particular k;
Conclude that $\mathrm{S}_{\mathrm{k}+1}$

"
Establishing that $\forall n \geq 1 S_{n}$

$$
S_{n}=" 1+3+5+(2 k-1)+\ldots+(2 n-1)=n^{2 "}
$$

Base Care: $\quad s_{1}={ }^{a} 1=1^{2}$
$\forall k \quad S_{k} \Rightarrow S_{k x}$

$$
\text { 1.H. } S_{k}={ }^{11} 1+3+\cdots+(2 k-1)=k^{2 "}
$$

Induction Step.

$$
\begin{aligned}
S_{k+1} & =\underbrace{1+3+5+\cdots+(2 k-1)}_{k^{2}+(2 k+1)}+(2 k+1) \\
& =(k+1)^{2}
\end{aligned}
$$

Establishing that $\forall \mathbf{n} \geq 1 \mathrm{~S}_{\mathrm{n}}$
 $$
S_{n}=" 1+3+5+(2 k-1)+\ldots+(2 n-1)=n^{2} "
$$

Establishing that $\forall \mathbf{n} \geq 1 \mathrm{~S}_{\mathrm{n}}$

$$
S_{n}=" 1+3+5+(2 k-1)+\ldots+(2 n-1)=n^{2 "}
$$

Base Case: \mathbf{S}_{1}
Domino Property:
Assume "Induction Hypothesis": \mathbf{S}_{k}
That means:

$$
\begin{array}{ll}
1+3+5+\ldots+(2 k-1) & =k^{2} \\
1+3+5+\ldots+(2 k-1)+(2 k+1) & =k^{2}+(2 k+1)
\end{array}
$$

Sum of first $k+1$ odd numbers $=(k+1)^{2}$

Theorem?

Every natural number > 1 can be factored into primes

$\mathrm{S}_{\mathrm{n}}=$ " n can be factored into primes"
Base case:
2 is prime $\Rightarrow S_{2}$ is true
How do we use the fact:
$S_{k-1}=$ " $k-1$ can be factored into primes" to prove that:
$S_{k}=$ " k can be factored into primes"

A different approach:
Assume 2,3,...,k-1 all can be factored into primes
Then show that k can be factored into primes

Theorem?
Every natural number > 1 can be factored into primes
$S_{n}=$ " n combe wotton as product of primes"

Buss Case: S_{2}
1.: Suppose $S_{2}, S_{3} \ldots S_{k-1}$ all the
S_{k} : either k is a prime
or $k=a \cdot b$ wis $a, b<k$
$S_{a} \Rightarrow a$ can be written as product $\%$ primes $S_{b} \Rightarrow b$ \qquad
$k=$ can be written as pro dud privies.

All Previous Induction To Prove $\forall \mathrm{k}, \mathrm{S}_{\mathrm{k}}$

Establish Base Case: $\mathbf{S}_{\mathbf{0}}$

Establish Domino Effect:
Assume $\forall \mathrm{j}<\mathrm{k}, \mathrm{S}_{\mathrm{j}}$ use that to derive S_{k}

Also called "Strong Induction"

on

Establish Domino Effect:
Assume $\forall \mathrm{j}<\mathrm{k}, \mathrm{S}_{\mathrm{j}}$ use that to derive S_{k}

"All Previous" Induction Repackaged As Standard Induction

Establish Base
Case: S_{0}
Establish
Domino Effect:
Let k be any number
Assume $\forall \mathbf{j}<k, \mathbf{S}_{\mathbf{j}}$
Prove S_{k}

Define $\mathrm{T}_{\mathrm{i}}=\forall \mathrm{j} \leq \mathrm{i}, \mathrm{S}_{\mathrm{j}}$
Establish Base Case T_{0}

Establish that $\forall k, T_{k} \Rightarrow T_{k+1}$

Let k be any number Assume $\mathrm{T}_{\mathrm{k}-1}$
Prove T_{k}

Method of Infinite Descent

> Show that for any counter-example you find a smaller one

Pierre de Fermat

$$
\begin{aligned}
& x^{3}+y^{3}=2^{3} \\
& x^{4}+y^{4}=2^{4} \quad x^{n}+y^{n}=2^{4}
\end{aligned}
$$

If a counter-example exists there would be an infinite sequence of smaller and smaller counter-examples

Theorem:

Every natural number > 1 can be factored into primes

Let n be a counter-example
Hence n is not prime, so $\mathrm{n}=\mathrm{ab}$
If both a and b had prime factorizations, then n would too

Thus a or b is a smaller counter-example

Theorem:

Every natural number > 1 can be factored into primes
 the smullest / least

Let n beacounter-example
Hence n is not prime, so $\mathrm{n}=\mathrm{ab}$
If both a and b had prime factorizations, then n would too

Thus a or b is a smaller counter-example

$$
\Rightarrow \text { coutradiction }
$$

Invariant (n):

3. Programming. A rule, such as the ordering of an ordered list, that applies throughout the life of a data structure or procedure. Each change to the data structure maintains the correctness of the invariant

Invariant Induction

Suppose we have a time varying world state: $W_{0}, W_{1}, W_{2}, \ldots$

Each state change is assumed to come from a list of permissible operations. We seek to prove that statement S is true of all future worlds

Argue that S is true of the initial world
Show that if S is true of some world then S remains true after one permissible operation is performed

Odd/Even Handshaking Theorem

At any party at any point in time define a person's parity as ODD/EVEN according to the number of hands they have shaken

Statement:
The number of people of odd parity must be even

Statement: The number of people of odd parity must be even
Initial case: Zero hands have been shaken at the start of a party, so zero people have odd parity

Invariant Argument:
If 2 people of the same parity shake, they both change and hence the odd parity count changes by 2 - and remains even
If 2 people of different parities shake, then they both swap parities and the odd parity count is unchanged

Induction is also how we can define and construct our world

So many things, from buildings to computers, are built up stage by stage, module by module, each depending on the previous stages

Inductive Definition

Example

Initial Condition, or Base Case:
$F(0)=1$
Inductive definition of
Inductive Rule: the powers of 2 !

For $n>0, F(n)=F(n-1)+F(n-1)$

n	0	1	2	3	4	5	6	7
$F(n)$	1	2	4	8	16	32	64	128

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations

Rabbit Reproduction

A rabbit lives forever
The population starts as single newborn pair
Every month, each productive pair begets a new pair which will become productive when they are 2 months old
$F_{\mathrm{n}}=$ \# of rabbit pairs at the beginning of the $n^{\text {th }}$ month

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Fibonacci Numbers

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Stage 0, Initial Condition, or Base Case:
Fib $(1)=1 ;$ Fib (2) $=1$
Inductive Rule:
For $n>3, \operatorname{Fib}(n)=\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$

Recurrences

Example

$T(1)=1$
$T(n)=4 T(n / 2)+n$
Notice that $T(n)$ is inductively defined only for positive powers of 2, and undefined on other values
$T(1)=1 \quad T(2)=6 \quad T(4)=28 \quad T(8)=120$
Guess a closed-form formula for $\mathbf{T}(\mathbf{n})$
Guess: $G(n)=2 n^{2}-n$

Inductive Proof of Equivalence

$$
G(n)=2 n^{2}-n
$$

$T(1)=1$
$T(n)=4 T(n / 2)+n$

Inductive Proof of Equivalence

Base Case: $\mathrm{G}(1)=1$ and $\mathrm{T}(1)=1$
Induction Hypothesis:

$$
T(x)=G(x) \text { for } x<n
$$

Hence: $T(n / 2)=G(n / 2)=2(n / 2)^{2}-n / 2$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& =4 G(n / 2)+n \\
& =4\left[2(n / 2)^{2}-n / 2\right]+n \\
& =2 n^{2}-2 n+n \\
& =2 n^{2}-n \\
& =G(n)
\end{aligned}
$$

$$
\begin{aligned}
& G(n)=2 n^{2}-n \\
& T(1)=1 \\
& T(n)=4 T(n / 2)+n
\end{aligned}
$$

We inductively

 proved the assertion that $G(n)=T(n)$Giving a formula for T with no
recurrences is called "solving the recurrence for $\mathrm{T}^{\prime \prime}$

Technique 2

Guess Form, Calculate Coefficients

$$
T(1)=1, T(n)=4 T(n / 2)+n
$$

Guess: $T(n)=a n^{2}+b n+c$ for some a,b,c

Technique 2

Guess Form, Calculate Coefficients

$$
T(1)=1, T(n)=4 T(n / 2)+n
$$

Guess: $T(n)=a n^{2}+b n+c$ for some a,b,c
Calculate: $T(1)=1$, so $a+b+c=1$

$$
T(n)
$$

$$
T(n)=4 T(n / 2)+n
$$

$a n^{2}+b n+c=4\left[a(n / 2)^{2}+b(n / 2)+c\right]+n$ $=a n^{2}+2 b n+4 c+n$
$(b+1) n+3 c=0$
Therefore: $b=-1 \quad c=0 \quad a=2$

Inductive Definitions: some examples

The Lindenmayer Game

Alphabet: \{a,b\}
Start word: a
Productions Rules:

$$
\begin{aligned}
& \operatorname{Sub}(a)=a b \quad \operatorname{Sub}(b)=a \\
& \operatorname{NEXT}\left(w_{1} w_{2} \ldots w_{n}\right)=
\end{aligned}
$$ $\operatorname{Sub}\left(w_{1}\right) \operatorname{Sub}\left(w_{2}\right) \ldots \operatorname{Sub}\left(w_{n}\right)$

Time 1: a
Time 2: ab
Time 3: aba
Time 4: abaab
How long are the strings at time n ?
FIBONACCI(n)
Time 5: abaababa

Aristid Lindenmayer (1925-1989)

- 1968 Invents L-systems in Theoretical Botany

Time 1: a
Time 2: ab
Time 3: aba
Time 4: abaab
Time 5: abaababa

The Koch Game

- Alphabet: $\Sigma=\{F,+,-\}$
- Start word: F
- Production Rules:
- $\operatorname{Sub}(F)=F+F-F+F$
- $\operatorname{Sub}(+)=+$

Helge von Koch

- Sub(-) = -
- $\operatorname{NEXT}\left(w_{1} w_{2} \ldots w_{n}\right)=\operatorname{Sub}\left(w_{1}\right) \operatorname{Sub}\left(w_{2}\right) \ldots \operatorname{Sub}\left(w_{n}\right)$

Gen 0: F
Gen 1: $F+F-F+F$
Gen 2: $F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F$

The Koch Game

$$
F+F--F+F
$$

Visual representation:
F draw forward one unit
$+\quad$ turn 60 degree left

- turn 60 degrees right

The Koch Game

$F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F$
Visual representation:
F draw forward one unit
$+\quad$ turn 60 degree left

- turn 60 degrees right

Koch Curve

Dragon Game

$\operatorname{Sub}(X)=X+Y F+\quad \operatorname{Sub}(Y)=-F X-Y$

Dragon Curve

Hilbert Game

Sub(L)= +RF-LFL-FR+ Sub $($ R $)=$-LF+RFR+FL-

Make 90 degree turns instead of 60 degrees.

Hilbert Curve

Slilbent

Hilbert's space filling curve

Peano's gossamer curve

Sierpinski's triangle

Lindenmayer 1968

$\operatorname{Sub}(F)=F[-F] F[+F][F]$

Interpret the stuff inside brackets as a branch.

Lindenmayer 1968

\square

Inductive Leaf

"The Algorithmic Beauty of Plants"

- Startat X $\operatorname{Sub}(X)=F-[[X]+X]+F[+F X]-X$ $\operatorname{Sub}(F)=F F$
- Angle=22.5

Much more stuff at

- http://www.cbc.yale.edu/courseware/swinglsyst em.html

Here's What
You Need to Know...

Inductive Proof
Standard Form
All Previous Form
Least-Counter Example Form Invariant Form

Inductive Definition
Recurrence Relations
Fibonacci Numbers
Guess and Verify

