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Lecture 3 (September 4, 2007)

Inductive Reasoning



Dominoes

Domino Principle: Line up 
any number of dominos in a 
row; knock the first one over 
and they will all fall



Dominoes Numbered 1 to n
Fk = “The kth domino falls”

If we set them up in a row then each 
one is set up to knock over the next:

For all 1 ≤ k < n:
Fk ⇒ Fk+1

F1 ⇒ F2 ⇒ F3 ⇒ …
F1 ⇒ All Dominoes Fall



Standard Notation
“for all” is written “∀”

Example:

For all k>0, P(k) ∀ k>0, P(k)=



Dominoes Numbered 1 to n
Fk = “The kth domino falls”

∀k, 0 ≤ k < n-1:
Fk ⇒ Fk+1

F0 ⇒ F1 ⇒ F2 ⇒ …
F0 ⇒ All Dominoes Fall



The Natural Numbers

One domino for each natural number:

0 1 2 3 …

= { 0, 1, 2, 3, . . . }N



Plato: The Domino Principle 
works for an infinite row of 
dominoes

Aristotle: Never seen an 
infinite number of anything, 

much less dominoes. 



Plato’s Dominoes
One for each natural number

Theorem: An infinite row of dominoes, 
one domino for each natural number.
Knock over the first domino and they all will fall



Plato’s Dominoes
One for each natural number

Theorem: An infinite row of dominoes, 
one domino for each natural number.
Knock over the first domino and they all will fall

Suppose they don’t all fall.  Let k > 0 be the lowest 
numbered domino that remains standing. 
Domino k-1 ≥ 0 did fall, but k-1 will knock over domino 
k. Thus, domino k must fall and remain standing. 
Contradiction.

Proof: 



Mathematical Induction
statements proved instead of

dominoes fallen

Infinite sequence of
dominoes

Infinite sequence of 
statements: S0, S1, …

Fk = “domino k fell” Fk = “Sk proved”

Conclude that Fk is true for all k

Establish: 1. F0

2. For all k, Fk ⇒ Fk+1



Inductive Proofs

To Prove ∀k ∈ N, Sk

Establish “Base Case”:  S0

Establish that ∀k, Sk ⇒ Sk+1

∀k, Sk ⇒ Sk+1

Assume hypothetically that 
Sk for any particular k; 

Conclude that Sk+1



Theorem?

The sum of the first n 
odd numbers is n2



Theorem?

The sum of the first n 
odd numbers is n2

Check on small values:
1 = 1
1+3 = 4
1+3+5 = 9
1+3+5+7 = 16



Theorem?

The sum of the first n 
odd numbers is n2

The kth odd number is 
(2k – 1), when k > 0

Sn is the statement that: 
“1+3+5+(2k-1)+...+(2n-1) = n2”



Sn = “1 + 3 + 5 + (2k-1) + . . +(2n-1) = n2”

Establishing that ∀n ≥ 1 Sn



Sn = “1 + 3 + 5 + (2k-1) + . . +(2n-1) = n2”

Establishing that ∀n ≥ 1 Sn



Sn = “1 + 3 + 5 + (2k-1) + . . +(2n-1) = n2”

Establishing that ∀n ≥ 1 Sn

Base Case: S1

Assume “Induction Hypothesis”: Sk

That means: 

1+3+5+…+ (2k-1) = k2

1+3+5+…+ (2k-1)+(2k+1) = k2 +(2k+1)

Sum of first k+1 odd numbers = (k+1)2

Domino Property:



Theorem
The sum of the first n 
odd numbers is n2



Primes:

Note: 1 is not considered prime

A natural number n > 1 
is a prime if it has no 
divisors besides 1 and 
itself



Theorem?

Every natural number > 1 can 
be factored into primes

Sn = “n can be factored into primes”

Base case:
2 is prime ⇒ S2 is true

Sk-1 = “k-1 can be factored into primes”
How do we use the fact:

Sk = “k can be factored into primes”

to prove that:



This shows a 
technical point 

about 
mathematical 

induction



Theorem?

Every natural number > 1 can 
be factored into primes

A different approach:

Assume 2,3,…,k-1 all can be factored 
into primes
Then show that k can be factored into 
primes



Theorem?

Every natural number > 1 can be factored into primes



All Previous Induction
To Prove ∀k, Sk

Establish Base Case:  S0

Establish Domino Effect:

Assume  ∀j<k, Sj

use that to derive Sk



All Previous Induction
To Prove ∀k, Sk

Establish Base Case:  S0

Establish Domino Effect:

Assume  ∀j<k, Sj

use that to derive Sk

Also called 
“Strong 

Induction”



Let k be any number

“All Previous” Induction
Repackaged As

Standard Induction

Establish Base 
Case:  S0

Establish 
Domino Effect:

Let k be any number
Assume  ∀j<k, Sj

Prove Sk

Define Ti = ∀j ≤ i, Sj

Establish Base 
Case T0

Establish that 
∀k, Tk ⇒ Tk+1

Assume Tk-1

Prove Tk



And there are 
more ways to do 
inductive proofs 



Method of Infinite Descent
Show that for any 
counter-example 

you find a smaller one

Pierre de Fermat

If a counter-example exists 
there would be an 

infinite sequence of 
smaller and smaller 
counter-examples



Theorem:
Every natural number > 1 can 
be factored into primes

Let n be a counter-example

Hence n is not prime, so n = ab

If both a and b had prime factorizations, 
then n would too

Thus a or b is a smaller counter-example



Theorem:
Every natural number > 1 can 
be factored into primes

Let n be a counter-example

Hence n is not prime, so n = ab

If both a and b had prime factorizations, 
then n would too

Thus a or b is a smaller counter-example



Invariant (n): 
1. Not varying; constant. 
2. Mathematics. Unaffected by a 

designated operation, as 
a transformation of 
coordinates.

Yet another way of 
packaging inductive 
reasoning is to define 
“invariants”



Invariant (n): 
3. Programming. A rule, such 

as the ordering of an 
ordered list, that applies 
throughout the life of a data 
structure or procedure. 
Each change to the data 
structure maintains the 
correctness of the invariant



Invariant Induction
Suppose we have a time varying 
world state: W0, W1, W2, …

Argue that S is true of the initial world

Show that if S is true of some world –
then S remains true after one permissible 
operation is performed

Each state change is assumed to 
come from a list of permissible 
operations. We seek to prove that 
statement S is true of all future worlds



Odd/Even Handshaking Theorem 

At any party at any point in time define a 
person’s parity as ODD/EVEN according to 
the number of hands they have shaken

Statement: 
The number of people of odd parity 
must be even



If 2 people of the same parity shake, they 
both change and hence the odd parity count 
changes by 2 – and remains even

Statement: The number of people of odd 
parity must be even

Initial case: Zero hands have been shaken 
at the start of a party, so zero people have 
odd parity

Invariant Argument:

If 2 people of different parities shake, then 
they both swap parities and the odd parity 
count is unchanged



Inductive reasoning 
is the high level idea

“Standard” Induction
“All Previous” Induction 
“Least Counter-example”

“Invariants”
all just 

different packaging



Induction is also how we 
can define and construct 
our world

So many things, from 
buildings to computers, are 
built up stage by stage, 
module by module, each 
depending on the previous 
stages



n 0 1 2 3 4 5 6 7

F(n)

Inductive Definition
Example

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule:
For n > 0, F(n) = F(n-1) + F(n-1)

1 2 4 8 16 32 64 128

Inductive definition of 
the powers of 2!



Leonardo Fibonacci
In 1202, Fibonacci proposed a problem 
about the growth of rabbit populations



month 1 2 3 4 5 6 7

rabbits

Rabbit Reproduction
A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets 
a new pair which will become productive 
when they are 2 months old

Fn= # of rabbit pairs at the beginning of 
the nth month

1 1 3 52 8 13



Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(1) = 1; Fib (2) = 1

Inductive Rule:
For n>3, Fib(n) =

month 1 2 3 4 5 6 7

rabbits 1 1 3 52 8 13

Fib(n-1) + Fib(n-2)



Recurrences



Example
T(1) = 1
T(n) =  4T(n/2) + n

Notice that T(n) is inductively defined only 
for positive powers of 2, and undefined on 
other values

T(1) = T(2) = T(4) = T(8) =1 6 28 120

Guess a closed-form formula for T(n) 

Guess: G(n) = 2n2 - n 



G(n) = 2n2 - n

T(1) = 1
T(n) = 4T(n/2) + n

Inductive Proof of Equivalence



G(n) = 2n2 - n

T(1) = 1
T(n) = 4T(n/2) + n

Inductive Proof of Equivalence

Base Case: G(1) = 1 and T(1) = 1

Induction Hypothesis:
T(x) = G(x) for x < n

Hence: T(n/2) = G(n/2) = 2(n/2)2 – n/2

T(n) = 4 T(n/2) + n

= 4 G(n/2) + n

= 4 [2(n/2)2 – n/2] + n
= 2n2 – 2n + n
= 2n2 – n

= G(n)



We inductively 
proved the assertion 
that G(n) = T(n)

Giving a formula for 
T with no 
recurrences is 
called “solving the 
recurrence for T”



T(1) = 1, T(n) = 4 T(n/2) + n

Technique 2
Guess Form, Calculate Coefficients

Guess: T(n) = an2 + bn + c 
for some a,b,c



T(1) = 1, T(n) = 4 T(n/2) + n

Technique 2
Guess Form, Calculate Coefficients

Guess: T(n) = an2 + bn + c 
for some a,b,c

Calculate: T(1) = 1, so  a + b + c = 1  

T(n) = 4 T(n/2) + n

an2 + bn + c = 4 [a(n/2)2 + b(n/2) + c] + n

= an2 + 2bn + 4c + n 
(b+1)n + 3c = 0

Therefore: b = -1     c = 0     a = 2



Inductive Definitions:
some examples



The Lindenmayer Game
Alphabet: {a,b}
Start word: a

Sub(a) = ab Sub(b) = a
NEXT(w1 w2 … wn) = 

Sub(w1) Sub(w2) … Sub(wn)

Productions Rules:

How long are the 
strings at time n?

FIBONACCI(n)

Time 1: a
Time 2: ab
Time 3: aba
Time 4: abaab
Time 5: abaababa



Aristid Lindenmayer (1925-1989)

• 1968 Invents L-systems in Theoretical 
Botany

Time 1: a
Time 2: ab
Time 3: aba
Time 4: abaab
Time 5: abaababa



The Koch Game

• Alphabet: Σ = { F, +, - }
• Start word: F
• Production Rules:
• Sub(F) = F+F--F+F  
• Sub(+) = + 
• Sub(-) = -
• NEXT(w1 w2 … wn) = Sub(w1) Sub(w2) … Sub(wn)

Gen 0: F
Gen 1:  F+F--F+F
Gen 2: F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F

Helge von Koch



F+F--F+F

Visual representation:
F draw forward one unit
+ turn 60 degree left   
- turn 60 degrees right

The Koch Game



Visual representation:
F draw forward one unit
+ turn 60 degree left   
- turn 60 degrees right

The Koch Game

F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F



Koch Curve



Sub(X) =X+YF+           Sub(Y) = -FX-Y

Dragon Curve

Dragon Game



Hilbert Game

Sub(L)=  +RF-LFL-FR+
Sub(R)= -LF+RFR+FL-

Hilbert Curve

Make 90 degree turns 
instead of 60 degrees.



Hilbert’s space filling curve



Peano’s gossamer curve



Sierpinski’s triangle



Lindenmayer 1968

Sub(F) =  F[-F]F[+F][F]

Interpret the stuff inside 
brackets as a branch.



Lindenmayer 1968



Inductive Leaf

“The Algorithmic Beauty of Plants”



• Start at X
Sub(X) = F-[[X]+X]+F[+FX]-X
Sub(F) = FF 

• Angle=22.5



©The Algorithmic Beauty of Plants, Przemyslaw Prusinkiewicz and Aristid Lindenmayer, Springer-Verlag 1990 



Much more stuff at

• http://www.cbc.yale.edu/courseware/swinglsyst
em.html



Inductive Proof
Standard Form
All Previous Form
Least-Counter Example Form
Invariant Form

Inductive Definition
Recurrence Relations
Fibonacci Numbers
Guess and Verify

Here’s What 
You Need to 

Know…


