Turing's Legacy: The Limits Of Computation.

Anything says is false!
The HELLO assignment

Write a JAVA program to output the word "HELLO" on the screen and halt.

Space and time are not an issue.
The program is for an ideal computer.

PASS for any working HELLO program, no partial credit.
Grading Script

The grading script G must be able to take any Java program P and grade it.

$$G(P) = \begin{cases}
\text{Pass, if } P \text{ prints only the word "HELLO" and halts.} \\
\text{Fail, otherwise.}
\end{cases}$$

How exactly might such a script work?
#include <stdio.h>
main(t,_,a)char *a;
{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)):1,t<=?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?main(2,_,+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,"@n'+,##*/{}w+/w#cdnr/+,{r/*de}+/**)&{+,w{%+,/w#q#n+,/#{l,+/,n{n+,/+##n+,/#};#q#n+,/+k#;++,'r':d'*3},{w+K w'K:'+)e#';dq#'l \q#'+d'K#!/+k#;q#'reKK#}w'r}eKK{nl]'/#;#q#n')(#}w')(){nl}'/+#n';d}rw'i;# \}{nl]!/n{n#; r#{w'r nc{nl}'/#{l,+'}K {rw' iK{[{nl]}'/w#q#n'wk nw' \iwk{KK{nl]!/w{%l'##w# i ; {nl}'/*q#'ld;r'}{nlwb!/*de}'c \;;{nl}-{}rw]'/+},{##'}#nc,,'#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{'n '}'#' \}+}##(!/) :t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main(*{a='/'})+t,_,a+1)
:0<t?main(2,2,"%s"):a='/'||main(0,main(-61,*a, "!ek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}
What kind of program could a student who hated his/her TA hand in?
Nasty Program

n:=0;
while (n is not a counter-example to the Riemann Hypothesis) {
 n++;
}
print "Hello";

The nasty program is a PASS if and only if the Riemann Hypothesis is false.
Despite the simplicity of the HELLO assignment, there is no program to correctly grade it! And we will prove this.
The theory of what can and can’t be computed by an ideal computer is called Computability Theory or Recursion Theory.
Are all reals describable?
Are all reals computable?

We saw that computable \iff describable, but do we also have describable \iff computable?

NO
NO

From Lecture 25:

The "grading function" we just described is not computable! (We'll see a proof soon.)
Infinite RAM Model

Platonic Version:
One memory location for each natural number 0, 1, 2, ...

Aristotelian Version:
Whenever you run out of memory, the computer contacts the factory. A maintenance person is flown by helicopter and attaches 100 Gig of RAM and all programs resume their computations, as if they had never been interrupted.
Computable Function

Fix any finite set of symbols, \(\Sigma \).
Fix any precise programming language, e.g., Java.

A program is any finite string of characters that is syntactically valid.

A function \(f: \Sigma^* \rightarrow \Sigma^* \) is **computable** if there is a program \(P \) that when executed on an ideal computer, computes \(f \).
That is, for all strings \(x \) in \(\Sigma^* \), \(f(x) = P(x) \).
Computable Function

Fix any finite set of symbols, Σ.
Fix any precise programming language, e.g., Java.

A program is any finite string of characters that is syntactically valid.

A function $f : \Sigma^* \rightarrow \Sigma^*$ is computable if there is a program P that when executed on an ideal computer, computes f.
That is, for all strings x in Σ^*, $f(x) = P(x)$.

Hence: countably many computable functions!
There are only countably many Java programs. Hence, there are only countably many computable functions.
Uncountably many functions

The functions $f: \Sigma^* \rightarrow \{0,1\}$ are in 1-1 onto correspondence with the subsets of Σ^* (the powerset of Σ^*).

<table>
<thead>
<tr>
<th>Subset S of Σ^*</th>
<th>\iff</th>
<th>Function f_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>x in S</td>
<td>\iff</td>
<td>$f_S(x) = 1$</td>
</tr>
<tr>
<td>x not in S</td>
<td>\iff</td>
<td>$f_S(x) = 0$</td>
</tr>
</tbody>
</table>
Uncountably many functions

The functions $f: \Sigma^* \rightarrow \{0,1\}$ are in 1-1 onto correspondence with the subsets of Σ^* (the powerset of Σ^*).

Hence, the set of all $f: \Sigma^* \rightarrow \{0,1\}$ has the same size as the power set of Σ^*.

And since Σ^* is countably infinite, its power set is uncountably infinite.
Countably many computable functions.

Uncountably many functions from Σ^* to $\{0,1\}$.

Thus, most functions from Σ^* to $\{0,1\}$ are not computable.
Can we explicitly describe an uncomputable function?

Can we describe an interesting uncomputable function?
Notation And Conventions

Fix a single programming language (Java)

When we write program P we are talking about the text of the source code for P

$P(x)$ means the output that arises from running program P on input x, assuming that P eventually halts.

$P(x) = \bot$ means P did not halt on x
The meaning of $P(P)$

It follows from our conventions that $P(P)$ means the output obtained when we run P on the text of its own source code.
P(P) ... So that's what I look like
The Halting Set K is the set of all programs P such that $P(P)$ halts.

$$K = \{ \text{Java } P \mid P(P) \text{ halts} \}$$
The Halting Problem

Is there a program HALT such that:

\[
\text{HALT}(P) = \begin{cases}
\text{yes, if } P(P) \text{ halts} \\
\text{no, if } P(P) \text{ does not halt}
\end{cases}
\]
The Halting Problem

\[K = \{ P \mid P(P) \text{ halts} \} \]

Is there a program \(\text{HALT} \) such that:

\[
\text{HALT}(P) = \begin{cases}
 \text{yes, if } P \in K \\
 \text{no, if } P \notin K
\end{cases}
\]

\(\text{HALT} \) decides whether or not any given program is in \(K \).
THEOREM: There is no program to solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that solved the halting problem.

\[\text{HALT}(P) = \begin{cases} \text{yes, if } P(P) \text{ halts} \\ \text{no, if } P(P) \text{ does not halt} \end{cases} \]

We will call HALT as a subroutine in a new program called CONFUSE.
CONFUSE

CONFUSE(P)
{
 if (HALT(P))
 then loop forever; //i.e., we don't halt
 else exit; //i.e., we halt
 // text of HALT goes here
}

Does CONFUSE(CONFUSE) halt?
CONFUSE

CONFUSE(P)
{ if (HALT(P))
 then loop forever; // i.e., we don't halt
 else exit; // i.e., we halt
 // text of HALT goes here }

Suppose CONFUSE(CONFUSE) halts
then HALT(CONFUSE) = TRUE
⇒ CONFUSE will loop forever on input CONFUSE

Suppose CONFUSE(CONFUSE) does not halt
then
⇒ CONFUSE will halt on input CONFUSE

CONTRADICTION
Theorem: [1937]

There is no program to solve the halting problem.
Turing’s argument is essentially the reincarnation of Cantor’s Diagonalization argument that we saw in the previous lecture.
Programs (computable functions) are countable, so we can put them in a (countably long) list.
YES, if $P_i(P_j)$ halts
No, otherwise
Let $d_i = \text{HALT}(P_i)$

$\text{CONFUSE}(P_i)$ halts iff $d_i = \text{no}$

(The CONFUSE function is the negation of the diagonal.)

Hence CONFUSE cannot be on this list.
Theorem: [1937]

There is no program to solve the halting problem.
Is there a real number that can be described, but not computed?
Consider the real number R_K whose binary expansion has a 1 in the j^{th} position iff $P_j \in K$ (i.e., if the j^{th} program halts).
Proof that R_K cannot be computed

Suppose it is, and program FRED computes it. then consider the following program:

```plaintext
MYSTERY(program text P)
    for j = 0 to forever do {
        if (P == P_j)
            then use FRED to compute j^{th} bit of R_K
        return YES if (bit == 1), NO if (bit == 0)
    }
```

MYSTERY solves the halting problem!
We call a set $S \subseteq \Sigma^*$ decidable or recursive if there is a program P such that:

- $P(x) = \text{yes}$, if $x \in S$
- $P(x) = \text{no}$, if $x \notin S$

We already know: the halting set K is undecidable
Decidable and Computable

<table>
<thead>
<tr>
<th>Subset S of Σ^*</th>
<th>\Leftrightarrow</th>
<th>Function f_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>x in S</td>
<td>\Leftrightarrow</td>
<td>$f_S(x) = 1$</td>
</tr>
<tr>
<td>x not in S</td>
<td>\Leftrightarrow</td>
<td>$f_S(x) = 0$</td>
</tr>
</tbody>
</table>

Set S is decidable \Leftrightarrow function f_S is computable

Sets are “decidable” (or undecidable), whereas functions are “computable” (or not)
Oracles and Reductions
Oracle For Set \(S \)

\(x \in S? \)

YES/NO
Example Oracle

\[S = \text{Odd Naturals} \]
K_0 = the set of programs that take no input and halt

Hey, I ordered an oracle for the famous halting set K, but when I opened the package it was an oracle for the different set K_0.

But you can use this oracle for K_0 to build an oracle for K.

GIVEN: Oracle for K_0
\[K_0\text{= the set of programs that take no input and halt}\]

\[P = [\text{input } I; Q]\]

Does \(P(P)\) halt?

BUILD: Oracle for \(K\)

\[\text{Does } [I:=P;Q] \text{ halt?}\]

GIVEN: Oracle for \(K_0\)
We’ve reduced the problem of deciding membership in K to the problem of deciding membership in K_0. Hence, deciding membership for K_0 must be at least as hard as deciding membership for K.
Thus if K_0 were decidable then K would be as well. We already know K is not decidable, hence K_0 is not decidable.
HELLO = the set of programs that print hello and halt

Does P halt?

Let \(P' \) be \(P \) with all print statements removed.

Is \([P'; \text{print HELLO}]\) a hello program?

BUILD: Oracle for \(K_0 \)

GIVEN: HELLO Oracle
Hence, the set HELLO is not decidable.
EQUAL = All \(<P,Q>\) such that \(P\) and \(Q\) have identical output behavior on all inputs

Is \(P\) in set HELLO?

Let HI = [print HELLO]

Are \(P\) and HI equal?

BUILD: HELLO Oracle

GIVEN: EQUAL Oracle
Halting with input, Halting without input, HELLO, and EQUAL are all undecidable.
Diophantine Equations

Does polynomial $4X^2Y + XY^2 = 0$ have an integer root? I.e., does it have a zero at a point where all variables are integers?

$D = \{\text{multi-variant integer polynomials } P \mid P \text{ has a root where all variables are integers}\}$

Famous Theorem: D is undecidable!

[This is the solution to Hilbert’s 10th problem]
Resolution of Hilbert’s 10th Problem: Dramatis Personae

Martin Davis, Julia Robinson, Yuri Matiyasevich (1982)

and...
Define “Fibonacci numbers” as follows:

Consider a sequence of digits $S = (a_n, a_{n-1}, \ldots, a_3, a_2, a_1)$, where (i) each $a_i \in \{0, 1\}$; (ii) no consecutive 1’s occurs in S, i.e., for all $1 \leq i \leq n - 1$, $a_i + a_{i+1} \leq 1$; and (iii) S has no leading zero, i.e., $a_n = 1$. We call S a “Fibonacci number” of length n and interpret it as the number

$$\sum_{i=1}^{n} a_i F_i$$

For example, $(1) = F_1 = 1$, $(1, 0) = F_2 = 2$, $(1, 0, 0) = F_3 = 3$, $(1, 0, 1) = F_3 + F_1 = 4$, $(1, 0, 0, 0) = F_4 = 5$, etc. Note that $(1, 1, 0)$ would not be a valid Fibonacci number.

- (20 points) Show that any positive integer N can be expressed in the “Fibonacci” representation.
- (15 points) Prove also that the representation is unique for all positive integer. That is, for each integer $N \geq 1$, if S_1 and S_2 both represent N, then the two sequences S_1 and S_2 are identical.

Zeckendorf’s Theorem: Every number can be represented uniquely in the Fibonacci representation!
Polynomials can encode programs.

There is a computable function

\[F : \text{Java programs that take no input} \rightarrow \text{Polynomials over the integers} \]

Such that

program P halts \iff F(P) has an integer root
D = the set of all integer polynomials with integer roots

GIVEN: Oracle for D

BUILD: HALTING Oracle

Does program P halt?

F(P) has integer root?
Problems that have no obvious relation to halting, or even to computation can encode the Halting Problem in non-obvious ways.
Self-Reference Puzzle

Write a program that prints itself out as output. No calls to the operating system, or to memory external to the program.
Write a program AutoCannibalMaker that takes the text of a program EAT as input and outputs a program called SELF$_{EAT}$.

When SELF$_{EAT}$ is executed, it should output EAT(SELF$_{EAT}$)
Suppose HALT with no input was programmable in JAVA.

Write a program AutoCannibalMaker that takes the text of a program EAT as input and outputs a program called SELF\(_{EAT}\).

When SELF\(_{EAT}\) is executed it should output EAT(SELF\(_{EAT}\))

Let EAT(P) = halt, if P does not halt

loop forever, otherwise.

What does SELF\(_{EAT}\) do?

Contradiction! Hence EAT does not have a corresponding JAVA program.
PHILOSOPHICAL INTERLUDE
Any well-defined procedure that can be grasped and performed by the human mind and pencil/paper, can be performed on a conventional digital computer with no bound on memory.
The Church-Turing Thesis is NOT a theorem. It is a statement of belief concerning the universe we live in.

Your opinion will be influenced by your religious, scientific, and philosophical beliefs...

...mileage may vary
No one has ever given a counter-example to the Church-Turing thesis. I.e., no one has given a concrete example of something humans compute in a consistent and well defined way, but that can’t be programmed on a computer. The thesis is true.
Mechanical Intuition

The brain is a machine. The components of the machine obey fixed physical laws. In principle, an entire brain can be simulated step by step on a digital computer. Thus, any thoughts of such a brain can be computed by a simulating computer. The thesis is true.
Spiritual Intuition

The mind consists of part matter and part soul. Soul, by its very nature, defies reduction to physical law. Thus, the action and thoughts of the brain are not simulable or reducible to simple components and rules. The thesis is false.
Quantum Intuition

The brain is a machine, but not a classical one. It is inherently quantum mechanical in nature and does not reduce to simple particles in motion. Thus, there are inherent barriers to being simulated on a digital computer. The thesis is false. However, the thesis is true if we allow quantum computers.
There are many other viewpoints you might have concerning the Church-Turing Thesis. But this ain't philosophy class!
Another important notion
We call a set $S \subseteq \Sigma^*$ **enumerable** or **recursively enumerable (r.e.)** if there is a program P such that:

- P prints an (infinite) list of strings.
- Any element on the list should be in S.
- Each element in S appears after a finite amount of time.
Is the halting set K enumerable?
Enumerating K

\[
\text{Enumerate} K \{ \\
\text{for } n = 0 \text{ to forever } \{ \\
\text{for } W = \text{ all strings of length } < n \text{ do } \{ \\
\text{if } W(W) \text{ halts in } n \text{ steps then output } W; \\
\} \\
\} \\
\}
\]
K is **not** decidable, but it is enumerable!

Let $K' = \{ \text{Java } P \mid P(P) \text{ does not halt} \}$

Is K' enumerable?

If both K and K' are enumerable, then K is decidable. (why?)
Now that we have established that the Halting Set is undecidable, we can use it for a jumping off points for more "natural" undecidability results.
Do these theorems about the limitations of computation tell us something about the limitations of human thought?