One Minute To Learn Programming: Finite Automata
Today we’ll talk about a programming language so simple that you can learn it in less than a minute.
Meet "ABA" The Automaton!

<table>
<thead>
<tr>
<th>Input String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>aba</td>
<td>Accept</td>
</tr>
<tr>
<td>aabb</td>
<td>Reject</td>
</tr>
<tr>
<td>aabba</td>
<td>Accept</td>
</tr>
<tr>
<td>ε</td>
<td>Accept</td>
</tr>
</tbody>
</table>
The Simplest Interesting Machine:

Finite State Machine

OR

Finite Automaton
Finite Automaton

<table>
<thead>
<tr>
<th>Friendly</th>
<th>Formal, “unfriendly”</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Finite set of states</th>
<th>$Q = {q_o, q_1, q_2, \ldots, q_k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A start state</td>
<td>q_o</td>
</tr>
<tr>
<td>A set of accepting states</td>
<td>$F = {q_{i_1}, q_{i_2}, \ldots, q_{i_r}}$</td>
</tr>
<tr>
<td>A finite alphabet</td>
<td>\sum</td>
</tr>
<tr>
<td>State transition instructions</td>
<td>$\partial : Q \times \Sigma \to Q$</td>
</tr>
</tbody>
</table>

- $\partial(q_i, a) = q_j$
How Machine M operates.

M "reads" one letter at a time from the input string (going from left to right)

M starts in state q_0.
If M is in state q_i reads the letter a then

If $\delta(q_i, a)$ is undefined then CRASH.

Otherwise M moves to state $\delta(q_i, a)$
Let $M = (Q, \Sigma, F, \delta)$ be a finite automaton.

M **accepts** the string x if when M reads x it ends in an accepting state.

M **rejects** the string x if when M reads x it ends in a non-accepting state.

M **crashes** on x if M crashes while reading x.
The set (or language) accepted by M is:

$$L_M = \{ x \in \Sigma^* \mid M \text{ accepts } x \}$$

$$\Sigma^k \equiv \text{All length } k \text{ strings over the alphabet } \Sigma$$

$$\Sigma^* \equiv \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \ldots$$

Notice that this is $\{ \varepsilon \}$.
Back to “ABA” The Automaton

<table>
<thead>
<tr>
<th>Input String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>aba</td>
<td>Accept</td>
</tr>
<tr>
<td>aabb</td>
<td>Reject</td>
</tr>
<tr>
<td>aabba</td>
<td>Accept</td>
</tr>
<tr>
<td>ε</td>
<td>Accept</td>
</tr>
</tbody>
</table>
What is the language accepted by this machine?

$L = \{a, b\}^* = \text{all finite strings of } a\text{'s and } b\text{'s}$
What is the language accepted by this machine?

\[a, b \]
What is the language accepted by this machine?

$L = \text{all even length strings of } a \text{'s and } b \text{'s}$
What machine accepts this language?

\[L = \text{all strings in} \ \{a,b\}^* \text{ that contain at least one} \ a \]
What machine accepts this language?

$L = \text{strings with an odd number of } b\text{'s and any number of } a\text{'s}$
What is the language accepted by this machine?

$L = $ any string ending with a followed by b
What is the language accepted by this machine?
What is the language accepted by this machine?

$L = \text{any string with at least two } a\text{'s}$
What machine accepts this language?

$L = \text{any string with an } a \text{ and a } b$
What machine accepts this language?

$L = \text{any string with an } a \text{ and a } b$
What machine accepts this language?

$L = \text{strings with an even number of } ab \text{ pairs}$
\[L = \text{all strings containing } ababb \text{ as a consecutive substring} \]
\(L = \) all strings containing \textit{ababb} as a consecutive substring

Invariant: I am state \textit{s} exactly when \textit{s} is the longest suffix of the input (so far) that forms a prefix of \textit{ababb}.
The “grep” Problem

Input:
- text \(T \) of length \(t \)
- string \(S \) of length \(n \)

Problem:
Does the string \(S \) appear inside the text \(T \)?

Naïve method:

Cost: \(O(nt) \) comparisons
Automata Solution

• Build a machine M that accepts any string with S as a consecutive substring.
• Feed the text to M.
• Cost: t comparisons + time to build M.
• As luck would have it, the Knuth, Morris, Pratt algorithm builds M quickly.
Real-life uses of finite state machines

• grep
• coke machines
• thermostats (fridge)
• elevators
• train track switches
• lexical analyzers for parsers
Any $L \subseteq \Sigma^*$ is defined to be a language.

L is just a set of strings. It is called a language for historical reasons.
Let L be a language.

L is called a regular language if there is some finite automaton that accepts L.

In this lecture we have seen many regular languages.

- even length strings
- strings containing $ababb$
Theorem: Any finite language is regular.

Proof: Make a machine with a "path" for each string in the language, sharing prefixes.

Example: \(L = \{a, bcd, ac, bb\} \)
Are all languages regular?
Consider the language

\[a^n b^n = \{ \varepsilon, ab, aabb, aaabbb, \ldots \} \]

i.e., a bunch of \(a \)'s followed by an equal number of \(b \)'s

No finite automaton accepts this language.

Can you prove this?
$a^n b^n$ is not regular. No machine has enough states to keep track of the number of a's it might encounter.
That is a fairly weak argument. Consider the following example...
$L =$ strings where the # of occurrences of the pattern ab is equal to the number of occurrences of the pattern ba

Can’t be regular. No machine has enough states to keep track of the number of occurrences of ab.
Remember “ABA”?

ABA accepts only the strings with an equal number of ab’s and ba’s!
Let me show you a professional strength proof that $a^n b^n$ is not regular....
Pigeonhole principle: Given n boxes and $m > n$ objects, at least one box must contain more than one object.

Letterbox principle: If the average number of letters per box is a, then some box will have at least a letters. (Similarly, some box has at most a.)
Theorem: $a^n b^n$ is not regular.

Proof: Assume that it is. Then $\exists \ M$ with k states that accepts it.

For each $0 \leq i \leq k$, let S_i be the state M is in after reading a^i.

$\exists i, j \leq k$ s.t. $S_i = S_j$, but $i \neq j$

M will do the same thing on $a^i b^i$ and $a^j b^i$.

But a valid M must reject $a^i b^i$ and accept $a^i b^j$.
MORAL:

Finite automata can't count.
You can learn much more about these creatures in the FLAC course.

Formal Languages, Automata, and Computation

• There is a unique smallest automaton for any regular language

• It can be found by a fast algorithm.