Counting II: Recurring Problems and Correspondences

\[(\heartsuit + \diagram + \spadesuit)(\diagram + \diagram) = ?\]
1-1 onto Correspondence
(just “correspondence” for short)
Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.
If a finite set A has a k-to-1 correspondence to finite set B, then $|B| = |A|/k$.
The number of subsets of an n-element set is 2^n.
A choice tree provides a “choice tree representation” of a set S, if

1) Each leaf label is in S, and each element of S is some leaf label
2) No two leaf labels are the same
Sometimes it is easiest to count the number of objects with property Q, by counting the number of objects that do not have property Q.
The number of subsets of size \(r \) that can be formed from an \(n \)-element set is:

\[
\binom{n}{r} = \frac{n!}{(n-r)!r!}
\]
Product Rule (rephrased)

Suppose every object of a set S can be constructed by a sequence of choices with P_1 possibilities for the first choice, P_2 for the second, and so on.

IF 1) Each sequence of choices constructs an object of type S, AND

2) No two different sequences create the same object

THEN

there are $P_1P_2P_3...P_n$ objects of type S.
How many different orderings of deck with 52 cards?

What type of object are we making?

Ordering of a deck

Construct an ordering of a deck by a sequence of 52 choices:

- 52 possible choices for the first card;
- 51 possible choices for the second card;
- 50 possible choices for the third card;
- ...
- 1 possible choice for the 52nd card.

By the product rule: \(52 \times 51 \times 50 \times \ldots \times 3 \times 2 \times 1 = 52! \)
The Sleuth’s Criterion

There should be a unique way to create every object in S.

in other words:

For any object in S, it should be possible to reconstruct the (unique) sequence of choices which lead to it.
The three big mistakes people make in associating a choice tree with a set S are:

1) Creating objects not in S

2) Missing out some objects from the set S

3) Creating the same object two different ways
DEFENSIVE THINKING

ask yourself:

Am I creating all objects of the right type?

Can I reverse engineer my choice sequence from any given object?
Let’s use our principles to extend our reasoning to different types of objects.
Counting Poker Hands...
52 Card Deck, 5 card hands

4 possible suits:
♥ ♦ ♣ ♠

13 possible ranks:
2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Pair: set of two cards of the same rank
Straight: 5 cards of consecutive rank
Flush: set of 5 cards with the same suit
Ranked Poker Hands

Straight Flush
A straight and a flush

4 of a kind
4 cards of the same rank

Full House
3 of one kind and 2 of another

Flush
A flush, but not a straight

Straight
A straight, but not a flush

3 of a kind
3 of the same rank, but not a full house or 4 of a kind

2 Pair
2 pairs, but not 4 of a kind or a full house

A Pair
Straight Flush

9 choices for rank of lowest card at the start of the straight.

4 possible suits for the flush.

$9 \times 4 = 36$

$$\frac{36}{\binom{52}{5}} = \frac{36}{2598960} = 1 \text{ in } 72,193.33...$$
4 Of A Kind

13 choices of rank
48 choices for remaining card

$13 \times 48 = 624$

$$\frac{624}{\binom{52}{5}} = \frac{624}{2598960} = \frac{1}{4165}$$
Flush

4 choices of suit

\[\binom{13}{5} \] choices of cards

“but not a straight flush...”

\[
\frac{\binom{5112}{5}}{\binom{52}{5}} = \frac{1}{508.4...}
\]

\[4 \times 1287 = 5148 \]

- 36 straight flushes

5112 flushes
Straight

9 choices of lowest card in straight
4^5 choices of suits for 5 cards

“but not a straight flush…”

\[
\frac{9180}{\binom{52}{5}} = \frac{1}{283.11\ldots}
\]

\(9 \times 2148 = 9216\)

- 36 straight flushes

9180 flushes
I want to store a 5 card poker hand using the smallest number of bits (space efficient).

Each card: 2 bits suit

4 bits rank

6 bits per card

5 cards ⇒ 30 bits (saved 2 bits)
How can we store a poker hand without storing its order?
Order the 2,598,560 Poker hands lexicographically [or in any fixed manner]

To store a hand all I need is to store its index of size $\lceil \log_2(2,598,560) \rceil = 22$ bits.

Hand 0000000000000000000000
Hand 0000000000000000000001
Hand 0000000000000000000010

...
22 Bits Is OPTIMAL

$$2^{21} = 2,097,152 < 2,598,560$$

Thus there are more poker hands than there are 21-bit strings.

Hence, you can’t have a 21-bit string for each hand.
A binary (Boolean) choice tree is a choice tree where each internal node has degree 2. Usually the choices are labeled 0 and 1.
22 Bits Is OPTIMAL

$2^{21} = 2097152 < 2,598,560$

A binary choice tree of depth 21 can have at most 2^{21} leaves.

Hence, there are not enough leaves for all 5-card hands.
An n-element set can be stored so that each element uses $\lceil \log_2(n) \rceil$ bits. Furthermore, any representation of the set will have some string of at least that length.
Information Counting Principle:

If each element of a set can be represented using k bits, the size of the set is bounded by 2^k.
Information Counting Principle:

Let S be a set represented by a depth-k binary choice tree, the size of the set is bounded by 2^k.
Let S be any set and T be a binary choice tree representation of S.

We can think of each element of S being encoded by the binary sequences of choices that lead to its leaf. We can also start with a binary encoding of a set and make a corresponding binary choice tree.
Now, for something completely different...

How many ways to rearrange the letters in the word “SYSTEMS”?
1) 7 places to put the Y,
6 places to put the T,
5 places to put the E,
4 places to put the M,
and the S’s are forced.

\[7 \times 6 \times 5 \times 4 = 840 \]
\[\binom{7}{3} \times 3! \times 2! \times 1! = 840 \]
2) Let’s pretend that the S’s are distinct:

\[S_1YS_2TEM S_3 \]

There are \(7! \) permutations of \(S_1YS_2TEM S_3 \).

But when we stop pretending we see that we have counted each arrangement of SYSTEMS \(3! \) times, once for each of \(3! \) rearrangements of \(S_1S_2S_3 \).

\[
\frac{7!}{3!} = 840
\]
Arrange \(n \) symbols
\(r_1 \) of type 1, \(r_2 \) of type 2, \ldots, \(r_k \) of type \(k \)

\[
\binom{n}{r_1} \binom{n-r_1}{r_2} \binom{n-r_1-r_2}{r_2} \cdots \binom{r_k}{r_k}
\]

\[
= \frac{n!}{(n-r_1)! r_1!} \cdot \frac{(n-r_1)!}{(n-r_1-r_2)! r_2!} \cdot \cdots \cdot \frac{(n-r_1-r_2-\ldots-r_{k-1})!}{r_k!}
\]

\[
= \frac{n!}{r_1! r_2! \cdots r_k!}
\]
\[\frac{14!}{2!3!2!} = \frac{14!}{2 \cdot 3 \cdot 2} = 3,632,428,800 \]
Remember:

The number of ways to arrange n symbols with r_1 of type 1, r_2 of type 2, ..., r_k of type k is:

$$\frac{n!}{r_1!r_2!\cdots r_k!}$$
5 distinct pirates want to divide 20 identical, indivisible bars of gold. How many different ways can they divide up the loot?
Sequences with 20 G's and 4 \backslash's

represents the following division among the pirates: 2, 1, 0, 17, 0

In general, the i^{th} pirate gets the number of G's after the $(i-1)^{st}$ \backslash and before the i^{th} \backslash.

This gives a correspondence between divisions of the gold and sequences with 20 G's and 4 \backslash's.
How many different ways to divide up the loot?
Sequences with 20 G’s and 4 /’s

\[
\binom{24}{4}
\]
How many different ways can \(n \) distinct pirates divide \(k \) identical, indivisible bars of gold?

\[
\binom{n + k - 1}{n - 1} = \binom{n + k - 1}{k}
\]
How many integer solutions to the following equations?

\[x_1 + x_2 + x_3 + x_4 + x_5 = 20 \]

\[x_1, x_2, x_3, x_4, x_5 \geq 0 \]

Think of \(X_k \) as being the number of gold bars that are allotted to pirate \(k \).
How many integer solutions to the following equations?

\[
\begin{align*}
x_1 + x_2 + x_3 + \ldots + x_{n-1} + x_n &= k \\
x_1, x_2, x_3, \ldots, x_{n-1}, x_n &\geq 0
\end{align*}
\]

\[
\binom{n+k-1}{n-1} = \binom{n+k-1}{k}
\]
Identical/Distinct Dice

Suppose that we roll seven dice.

How many different outcomes are there, if order matters?

\[6^7\]

What if order doesn't matter? (E.g., Yahtzee)

\[\binom{12}{7}\]
7 Identical Dice

How many different outcomes?

Corresponds to 6 pirates and 7 bars of gold!

Let X_k be the number of dice showing k. The k^{th} pirate gets X_k gold bars.
Multisets

A **multiset** is a set of elements, each of which has a *multiplicity*.

The **size** of the multiset is the sum of the multiplicities of all the elements.

Example:
{X, Y, Z} with \(m(X)=0 \), \(m(Y)=3 \), \(m(Z)=2 \)

Unary visualization: \(\{Y, Y, Y, Z, Z\} \)
Counting Multisets

There are \(\binom{n+k-1}{n-1} = \binom{n+k-1}{k} \) ways to choose a multiset of size \(k \) from \(n \) types of elements.
Back to the pirates

How many ways are there of choosing 20 pirates from a set of 5 pirates, with repetitions allowed?

\[
\binom{5+20-1}{20} = \binom{24}{20} = \binom{24}{4}
\]
\[x_1 + x_2 + x_3 + \ldots + x_{n-1} + x_n = k\]
\[x_1, x_2, x_3, \ldots, x_{n-1}, x_n \geq 0\]

has \[\binom{n+k-1}{n-1} = \binom{n+k-1}{k}\] integer solutions.
POLYNOMIALS EXPRESS CHOICES AND OUTCOMES

Products of Sum = Sums of Products

\[(\text{hat} + \text{bag} + \text{hat})(\text{tie} + \text{tie}) = \text{hat} + \text{bag} + \text{hat} + \text{tie} + \text{tie} + \text{tie}\]
(b^1 + b^2 + b^3)(t^1 + t^2) =
\((b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 + \)
(b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 + b^1t^2 +
\[(b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 + b^1t^2 + b^2t^1 + \]
\[(b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 + b^1t^2 + b^2t^1 + b^2t^2 \]

\[(b^1 + b^2 + b^3)(t^1 + t^2) = b^1 t^1 + b^1 t^2 + b^2 t^1 + b^2 t^2 + b^3 t^1 + \]
\[(b^1 + b^2 + b^3)(t^1 + t^2) = \ b^1t^1 + b^1t^2 + b^2t^1 + b^2t^2 + b^3t^1 + b^3t^2\]
There is a correspondence between paths in a choice tree and the cross terms of the product of polynomials!
Choice tree for terms of $(1+X)^3$

Combine like terms to get $1 + 3X + 3X^2 + X^3$
What is a closed form expression for c_k?

$$(1 + X)^n = c_0 + c_1 X + c_2 X^2 + \ldots + c_n X^n$$
What is a closed form expression for c_n?

\[(1 + X)^n\] n times

After multiplying things out, but before combining like terms, we get 2^n cross terms, each corresponding to a path in the choice tree.

c_k, the coefficient of X^k, is the number of paths with exactly k X's.

$c_k = \binom{n}{k}$
The Binomial Formula

\[(1 + X)^n = \binom{n}{0} + \binom{n}{1}X + \binom{n}{2}X^2 + \cdots + \binom{n}{k}X^k + \cdots + \binom{n}{n}X^n\]
The Binomial Formula

\[(1+X)^0 = 1\]

\[(1+X)^1 = 1 + 1X\]

\[(1+X)^2 = 1 + 2X + 1X^2\]

\[(1+X)^3 = 1 + 3X + 3X^2 + 1X^3\]

\[(1+X)^4 = 1 + 4X + 6X^2 + 4X^3 + 1X^4\]
The Binomial Formula

\[(X + Y)^n = \sum_{k=0}^{n} \binom{n}{k} X^k Y^{n-k}\]

\[= \binom{n}{0} X^0 Y^n + \binom{n}{1} X^1 Y^{n-1} + \binom{n}{2} X^2 Y^{n-2} + \ldots + \binom{n}{n} X^n Y^0\]
The Binomial Formula

\[(X + Y)^n = \sum_{k=0}^{k=n} \binom{n}{k} X^k Y^{n-k}\]
What is the coefficient of EMSTY in the expansion of
\((E + M + S + T + Y)^5\)?
What is the coefficient of \(\text{EMS}^3 \text{TY} \) in the expansion of \((E + M + S + T + Y)^7\)?

The number of ways to rearrange the letters in the word SYSTEMS.
What is the coefficient of \(BA^3N^2\) in the expansion of \((B + A + N)^6\)?
What is the coefficient of $X_1^{r_1}X_2^{r_2}X_3^{r_3} \ldots X_k^{r_k}$ in the expansion of $(X_1+X_2+X_3+\ldots+X_k)^n$?

$$\frac{n!}{r_1!r_2!r_3!\ldots r_k!}$$
Multinomial Coefficients

\[
\binom{n}{r_1; r_2; \ldots; r_k} = \begin{cases}
0 & \text{if } r_1 + r_2 + \ldots + r_k \neq n \\
\frac{n!}{r_1! r_2! \ldots r_k!} & \text{if } r_1 + r_2 + \ldots + r_k = n
\end{cases}
\]
The Multinomial Formula

\[(X_1 + X_2 + \ldots + X_k)^n = \sum_{v_1, v_2, \ldots, v_k} \binom{n}{v_1, v_2, \ldots, v_k} X_1^{v_1} X_2^{v_2} X_3^{v_3} \ldots X_k^{v_k}\]

where \(\binom{n}{v_1, v_2, \ldots, v_k}\) is the multinomial coefficient.
There is much, much more to be said about how polynomials encode counting questions!
References

Applied Combinatorics, by Alan Tucker