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How to play the 9 stone game?

9 stones, numbered 1-9 

Two players alternate moves. 

Each move a player gets to take a new stone

Any subset of 3 stones adding to 15, wins.
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For enlightenment, let’s 
look to ancient China in 
the days of Emperor Yu. 

A tortoise emerged from 
the river Lo…



Magic Square: Brought to humanity on the 
back of a tortoise from the river Lo in the 

days of Emperor Yu
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Magic Square: Any 3 in a vertical, 
horizontal, or diagonal line add up to 15.
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Conversely, 
any 3 that add to 15 must be on a line.

618

753

294



618

753

294

TIC-TAC-TOE on a Magic Square
Represents The Nine Stone Game

Alternately choose squares from 1-9. 
Get 3 in a row to win.



BIG IDEA!

Don’t stick with the 
representation in 

which you encounter 
problems, always 
seek the more 
useful one!



This IDEA takes 
practice, practice, 

practice to 
understand and 

use.



Your Ancient 
Heritage

Let’s take a historical 
view on abstract 
representations



Mathematical Prehistory
30,000 BC

Paleolithic peoples in Europe record unary 
numbers on bones

1 represented by 1 mark
2 represented by 2 marks
3 represented by 3 marks

.

.

.



1

2

3

4

Prehistoric Unary



Hang on a minute! 

Isn’t unary too literal as a 
representation? 

Does it deserve to be an 
“abstract” representation?



It’s important to respect 
each representation, no 
matter how primitive 

Unary is a perfect example



Consider the problem of 
finding a formula for the 

sum of the first n numbers

You already used 
induction to verify that 
the answer is ½n(n+1) 



1 + 2 3 n-1 n S+ + … + + =

1+2…n-1n S++n-2++ =

n+1+n+1…n+1n+1 2S++n+1++ =

n(n+1) = 2S

S = 
n(n+1)

2

Gauss



1 + 2 3 n-1 n S+ + … + + =

1+2…n-1n S++n-2++ =

n(n+1) = 2S

1     2 . . . . . . . . n

n  . . . . . . .  2   1

There are n(n+1) 
dots in the grid!S = 

n(n+1)

2



Very convincing! 
Unary brings out the 

geometry of the problem 
and makes each step look 

natural

By the way, my name is 
Bonzo. And you are?



Odette

Yes, Bonzo. Let’s 
take it even 
further…



nth Triangular Number

∆n = 1 + 2 + 3 + . . . + n-1 + n

= n(n+1)/2



nth Square Number

n = n2

= ∆n + ∆n-1



Breaking a square up in a new way



Breaking a square up in a new way

 1



Breaking a square up in a new way

 1 + 3



Breaking a square up in a new way

 1 + 3 + 5



Breaking a square up in a new way

 1 + 3 + 5 + 7



Breaking a square up in a new way

 1 + 3 + 5 + 7 + 9



 1 + 3 + 5 + 7 + 9 = 52

Breaking a square up in a new way



Pythagoras

 The sum of the 
first n odd 

numbers is n2

Here is an 
alternative dot 
proof of the 
same sum…. 



n = ∆n + ∆n-1

= n2

nth Square Number



n = ∆n + ∆n-1

= n2

nth Square Number



n = ∆n + ∆n-1

nth Square Number



n = ∆n + ∆n-1

= Sum of first n 
odd numbers

nth Square Number



∆n + ∆n-1 = 

Same proof in high school notation

1 + 2 + 3 + 4 ...

+   1 + 2 + 3 + 4 + 5 ...

1 + 3 + 5 + 7 + 9 …

Sum of the first n odd numbers



Check the next 
one out…



∆∆∆∆n

∆∆∆∆n

= (∆∆∆∆n)2Area of ∆∆∆∆n × ∆∆∆∆n square



∆∆∆∆n-1

∆∆∆∆n-1

∆∆∆∆n

∆∆∆∆n

= (∆∆∆∆n)2Area of ∆∆∆∆n × ∆∆∆∆n square



∆∆∆∆n-1

∆∆∆∆n-1

?

?

∆∆∆∆n

∆∆∆∆n

= (∆∆∆∆n)2Area of ∆∆∆∆n × ∆∆∆∆n square



∆∆∆∆n-1

∆∆∆∆n-1

n

n

∆∆∆∆n

∆∆∆∆n

= (∆∆∆∆n)2Area of ∆∆∆∆n × ∆∆∆∆n square



∆∆∆∆n-1

∆∆∆∆n-1

n

n

∆∆∆∆n

∆∆∆∆n

= (∆∆∆∆n)2Area of ∆∆∆∆n × ∆∆∆∆n square



∆∆∆∆n-1

∆∆∆∆n-1

n

n

∆∆∆∆n

∆∆∆∆n

(∆∆∆∆n-1)2

n∆∆∆∆n-1

n ∆∆ ∆∆
n

Area of ∆∆∆∆n × ∆∆∆∆n square = (∆∆∆∆n)2

= (∆n-1)2 + n∆n-1 + n∆n

= (∆n-1)2 + n(∆n-1 + ∆n)

= (∆n-1)2 + n(n)

= (∆n-1)2 + n3



(∆∆∆∆n)2 = n3 + (∆∆∆∆n-1)2

= n3 + (n-1)3 + (∆∆∆∆n-2)2

= n3 + (n-1)3 + (n-2)3 + (∆∆∆∆n-3)2

= n3 + (n-1)3 + (n-2)3 + … + 13



(∆n)2  = 13 + 23 + 33 + … + n3

= [ n(n+1)/2 ]2

Pythagoras



Can you find a formula 
for the sum of the 
first n squares?

Babylonians needed this sum 
to compute the number of 
blocks in their pyramids



Ancients grappled with 
abstraction in 
representation

Let’s look back to the 
dawn of symbols…



Sumerians [modern Iraq]



8000 BC Sumerian tokens use multiple
symbols to represent numbers

3100 BC Develop Cuneiform writing

2000 BC Sumerian tablet demonstrates
base 10 notation (no zero),
solving linear equations,
simple quadratic equations

Biblical timing: Abraham born in the 
Sumerian city of Ur in 2000 BC

Sumerians [modern Iraq]



Babylonians Absorb 
Sumerians

1900 BC Sumerian/Babylonian Tablet:
Sum of first n numbers
Sum of first n squares
“Pythagorean Theorem”
“Pythagorean Triples”
some bivariate equations

1600 BC Babylonian Tablet:
Take square roots
Solve system of n linear 
equations





Egyptians
6000 BC Multiple symbols for numbers

3300 BC Developed Hieroglyphics

1850 BC Moscow Papyrus: 
Volume of truncated pyramid

1650 BC Rhind Papyrus [Ahmes/Ahmose]:
Binary Multiplication/Division 
Sum of 1 to n
Square roots
Linear equations

Biblical timing: Joseph Governor is of Egypt



Moscow Papyrus



3500 BC Perhaps the first writing system?!

2000 BC Had a uniform decimal system of
weights and measures 

Harrappans
[Indus Valley Culture] Pakistan/India



1200 BC Independent writing system
(Surprisingly late)

1200 BC I Ching [Book of changes]:
Binary system developed to do 
numerology

China



Rhind Papyrus
Scribe Ahmes was Martin Gardener of his day!



Rhind Papyrus
Scribe Ahmes was Martin Gardener of his day!



A man has 7 houses,
Each house contains 7 cats,
Each cat has killed 7 mice,
Each mouse had eaten 7 ears of spelt,
Each ear had 7 grains on it.
What is the total of all of these?

Sum of powers of 7

Rhind Papyrus
Scribe Ahmes was Martin Gardener of his day!



1 + X1 + X2 + X3 + … + Xn-2 + Xn-1 =
X - 1

Xn – 1

We’ll use this 
fundamental sum again 

and again:

The Geometric Series



A Frequently Arising Calculation

(X-1) ( 1 + X1 + X2 + X3 + … + Xn-2 + Xn-1 )

X1 + X2 + X3 +  … + Xn-2 + Xn-1 + Xn

- 1 - X1 - X2 - X3 - … - Xn-2 - Xn-1

=   Xn - 1

=

1 + X1 + X2 + X3 + … + Xn-2 + Xn-1 =
X - 1 

Xn – 1

(when x ≠ 1)



1 + X1 + X2 + X3 + … + Xn-2 + Xn-1 =
X - 1 

Xn – 1

(when x ≠ 1)

1 + 21 +22 + 23 + … + 2n-1 =    2n -1

Geometric Series for X=2



Numbers and their 
properties can be 
represented as 

strings of symbols



Strings Of Symbols

We take the idea of symbol and sequence 
of symbols as primitive

Let ΣΣΣΣ be any fixed finite set of symbols. 
ΣΣΣΣ is called an alphabet, or a set of symbols

Examples: 
Σ = {0,1,2,3,4}
Σ = {a,b,c,d, …, z}
Σ = all typewriter symbols
Σ = { a , b , c , d , …, z }



Strings Over the Alphabet Σ

A string is a sequence of symbols from ΣΣΣΣ

Let s and t be strings

Then st denotes the concatenation of s and t
i.e., the string obtained by the string s 
followed by the string t

Now define ΣΣΣΣ+ by these inductive rules:

s,t ∈ Σ+ ⇒ st ∈ Σ+

x ∈ Σ⇒ x ∈ Σ+



The Set Σ*

Define εεεε to be the empty string
i.e., XεY= XY for all strings X and Y

ε is also called the string of length 0

Define Σ* = Σ+ ∪ {ε}



Σ+ is set of all finite 
strings that we can make 
using (at least one) letters 

from Σ

Σ* is the set of all finite 
strings that we can make 

using letters from Σ, 
including the empty string.



Let DIGITS = 
{0,1,2,3,4,5,6,7,8,9} 
be a symbol alphabet

Any string in 
DIGITS+ will be 

called a 
decimal number



Let BITS = {0,1} 
be a symbol alphabet

Any string in BITS+

will be called a 
binary number



Let ROCK = {•} 
be a symbol alphabet

Any string in ROCK+

will be called a 
unary number



Let BASE-X = 
{0,1,2,…,X-1} 

be a symbol alphabet

Any string in BASE-
X+ will be called a 
base-X number



Each of these sets 
of sequences can 

represent numbers.

We just need to 
specify the correct 
map between sets 
of sequences and 

numbers



Inductively defined
function 

f : ROCK+ → N

f(•) = 1
f(• X) = f(X) + 1



Inductively defined 
function 

f : BITS+ → N

f(0) =0; f(1) =1

If |W| > 1 then 
W=Xb

(b is a bit)
f(Xb) = 2f(X) + b



Non-inductive 
representation of f:

f(an-1 an-2 … a0) =

an-12n-1 + an-22n-2 +…+ a020



Two identical maps from 
sequences to numbers:

f(0) = 0; f(1) =1
f(Xb) = 2f(X) + b

and
f(an-1 an-2 … a0) =

an-12n-1 + an-22n-2 +…+ a020



The symbol a0 is called 
the Least Significant Bit 

or the Parity Bit

a0 = 0 

iff

f(an-1an-2…a0) = 

an-12n-1 + an-22n-2 +…+ a020

is an even number



Theorem: Each natural has a 
binary representation

Base Case: 0 and 1 do

Induction hypothesis: Suppose all natural 
numbers less than n have a binary 
representation 

Induction Step: Note that n = 2m+b for 
some m < n, with b = 0 or 1 

Represent n as the left-shifted sequence 
for m concatenated with the symbol for b



No Leading Zero Binary 
(NLZB)

A binary string that is either 0 or 1, 
Or has length > 1, and does not have a 
leading zero

0

1

10000001

01

000001101001

Is in NLZB

Is NOT in NLZB

Is NOT in NLZB

Is in NLZB

Is in NLZB



Theorem: Each natural has a 
unique NLZB representation

Base Case: 0 and 1 do

Induction hypothesis: Suppose all natural 
numbers less than n have a unique NLZB 
representation 

Induction Step: Suppose n = 2m+b has 2 
NLZB representations
Their parity bit b must be identical
Hence, m also has two distinct NLZB 
representations, which contradicts the 
induction hypothesis. So n must have a 
unique representation



Inductive definition is 
great for showing 
UNIQUE representation:
f(Xb) = 2f(X) + b

Let n be the smallest number 
reprinted by two different 
binary sequences. They must 
have the same parity bit, 
thus we can make a smaller 
number that has distinct 
representations



Each natural number 
has a unique 

representation as a 
(No Leading Zeroes) 

Binary number!



BASE X Representation
S = an-1 an-2 … a1 a0 represents the number: 

Base 2 [Binary Notation]
101 represents: 1 (2)2 + 0 (21) + 1 (20)

Base 7
015 represents: 0 (7)2 + 1 (71) + 5 (70)

=

=

an-1 Xn-1 + an-2 Xn-2 + . . . + a0 X0



Sumerian-Babylonian: 10, 60, 360
Egyptians: 3, 7, 10, 60
Maya: 20
Africans: 5, 10
French: 10, 20
English: 10, 12, 20

Bases In Different Cultures



BASE 10 Representation 

S = ( an-1 an-2 … a1 a0 )10 represents the number:

an-1 10n-1 + an-2 10n-2 + . . . + a0 100

Largest number representable in base-10 
with n “digits”

= (999999…9)X [with n 9’s]

= 9 × (10n-1 + 10n-2 + . . . + 100)

= (10n – 1)



BASE X Representation 

S = ( an-1 an-2 … a1 a0 )X represents the number:

an-1 Xn-1 + an-2 Xn-2 + . . . + a0 X0

Largest number representable in base-X 
with n “digits”

= (X-1   X-1   X-1 X-1 X-1 … X-1)X

= (X-1)(Xn-1 + Xn-2 + . . . + X0)

= (Xn – 1)



k uses  log2k  + 1 digits in base 2

Fundamental Theorem For Binary

Each of the numbers from 0 to 2n-1  is 
uniquely represented by an n-bit number 
in binary



k uses  logXk  + 1 digits in base X

Fundamental Theorem For Base-X

Each of the numbers from 0 to Xn-1 is 
uniquely represented by an n-“digit”
number in base X



n has length n in unary, 
but has length 

 log2n  + 1 in binary

Unary is exponentially 
longer than binary



Other Representations:
Egyptian Base 3

We can prove a unique representation theorem

Example: 1 -1 -1 = 9 - 3 - 1 =  5

Here is a strange new one:
Egyptian Base 3 uses -1, 0, 1

Conventional Base 3: 
Each digit can be 0, 1, or 2



How could this be Egyptian? 
Historically, negative 

numbers first appear in the 
writings of the Indian 

mathematician Brahmagupta 
(628 AD) 



One weight for each power of 3 
Left = “negative”. Right = “positive”



Study Bee

Unary and Binary
Triangular Numbers
Dot proofs

Geometric sum
(1+x+x2 + … + xn-1) = (xn -1)/(x-1)

Base-X representations
unique binary representations
proof for no-leading zero binary

k uses   log2k  + 1 = log2 (k+1)  digits in 
base 2

Largest length n number in base X


