Great Theoretical Ideas In Computer Science

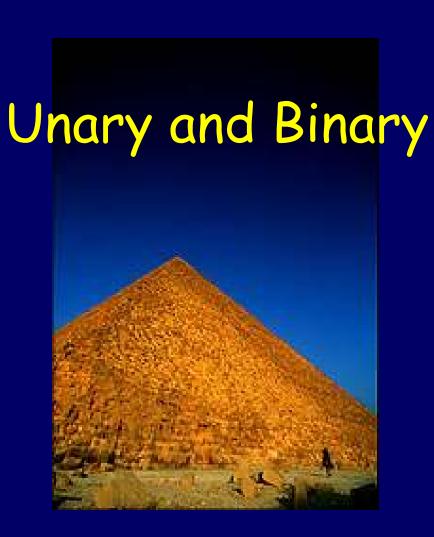
Anupam Gupta

Lecture 4 Sept 7, 2006

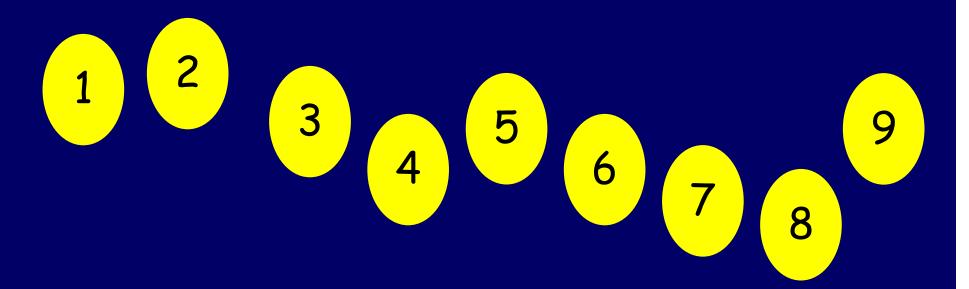
CS 15-251

Fall 2006

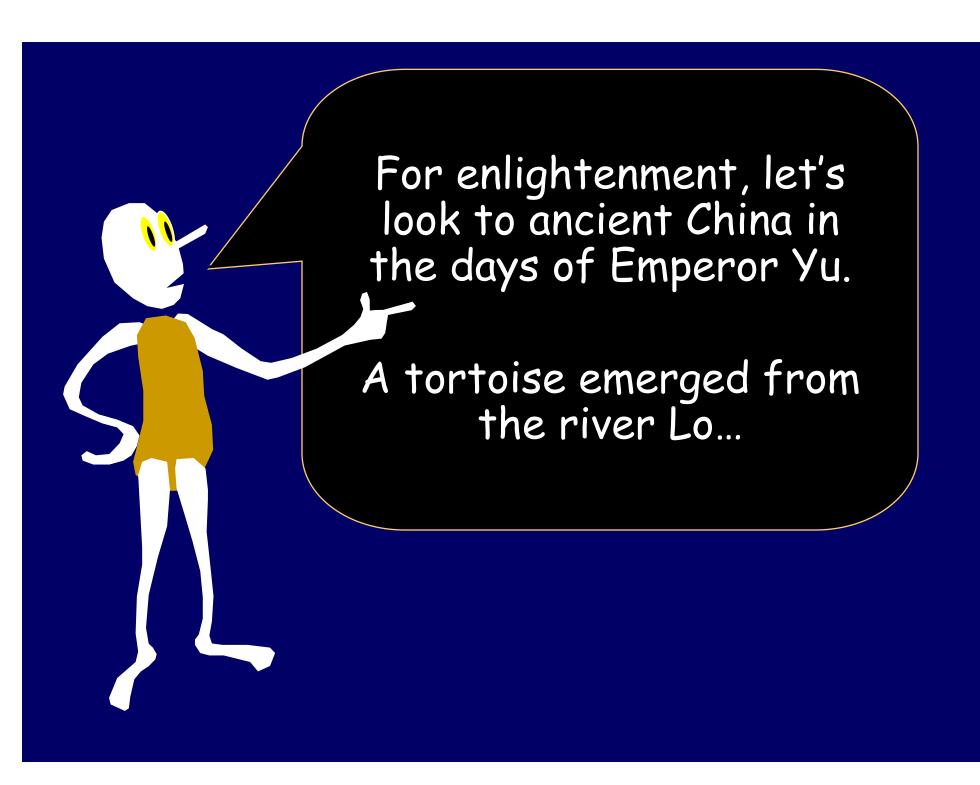
Carnegie Mellon University



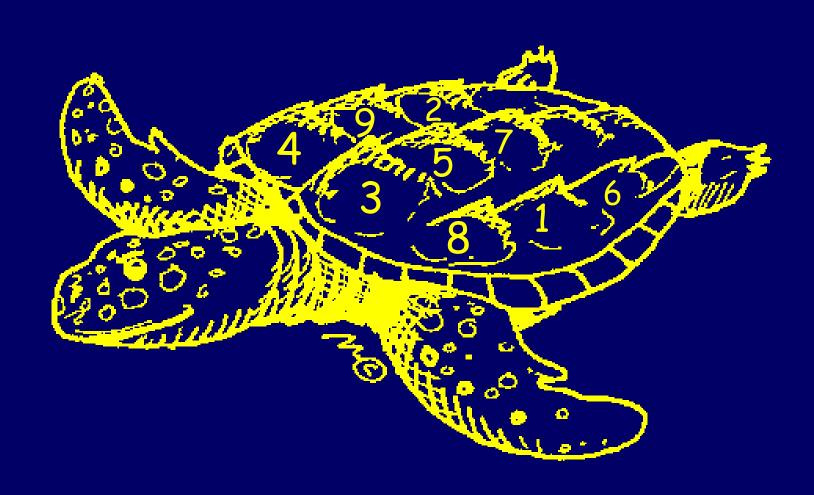
How to play the 9 stone game?



9 stones, numbered 1-9
Two players alternate moves.
Each move a player gets to take a new stone
Any subset of 3 stones adding to 15, wins.



Magic Square: Brought to humanity on the back of a tortoise from the river Lo in the days of Emperor Yu



Magic Square: Any 3 in a vertical, horizontal, or diagonal line add up to 15.

4	9	2
3	5	7
8	1	6

Conversely, any 3 that add to 15 must be on a line.

4	9	2
3	5	7
8	1	6

TIC-TAC-TOE on a Magic Square Represents The Nine Stone Game

Alternately choose squares from 1-9. Get 3 in a row to win.

4	9	2
3	5	7
8	1	6

Don't stick with the representation in which you encounter problems, always seek the more useful one!

Mathematical Prehistory 30,000 BC

Paleolithic peoples in Europe record unary numbers on bones

1 represented by 1 mark

2 represented by 2 marks

3 represented by 3 marks

•

•

•

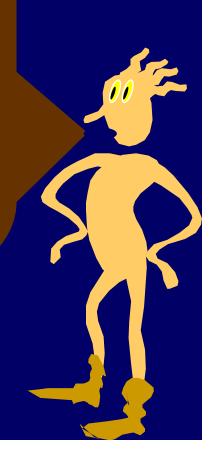
Prehistoric Unary

Isn't unary too literal as a representation?

Does it deserve to be an "abstract" representation?

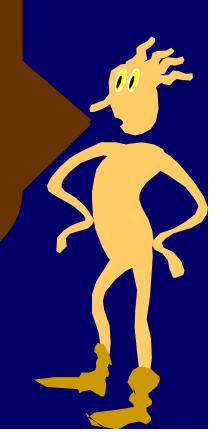
It's important to respect each representation, no matter how primitive

Unary is a perfect example



Consider the problem of finding a formula for the sum of the first n numbers

You already used induction to verify that the answer is $\frac{1}{2}$ n(n+1)



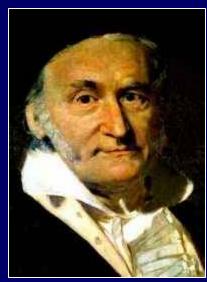
$$1 + 2 + 3 + ... + n-1 + n = 5$$

 $n + n-1 + n-2 + ... + 2 + 1 = 5$

$$n+1 + n+1 + n+1 + ... + n+1 + n+1 = 25$$

$$n(n+1) = 25$$

$$S = \frac{n(n+1)}{2}$$



Gauss

$$1 + 2 + 3 + ... + n-1 + n = S$$

$$n + n-1 + n-2 + ... + 2 + 1 = 5$$

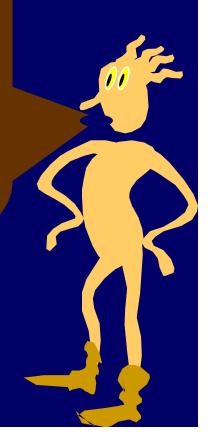
$$S = \frac{n(n+1)}{2}$$
n 2 1

Very convincing!
Unary brings out the geometry of the problem and makes each step look natural

By the way, my name is Bonzo. And you are?

Odette

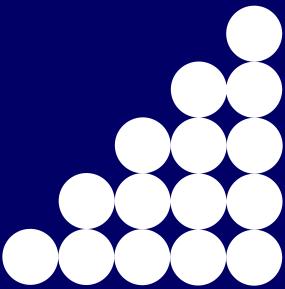
Yes, Bonzo. Let's take it even further...

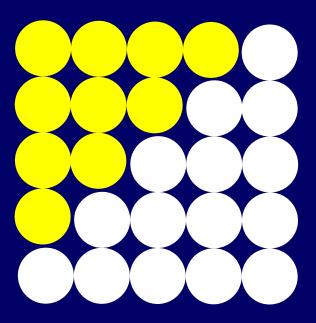


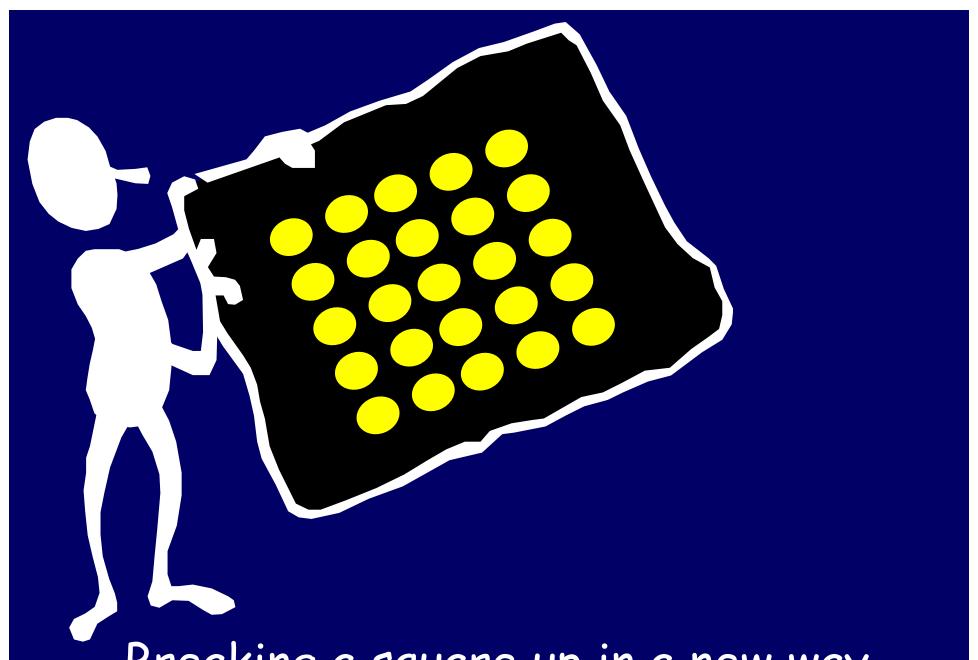
nth Triangular Number

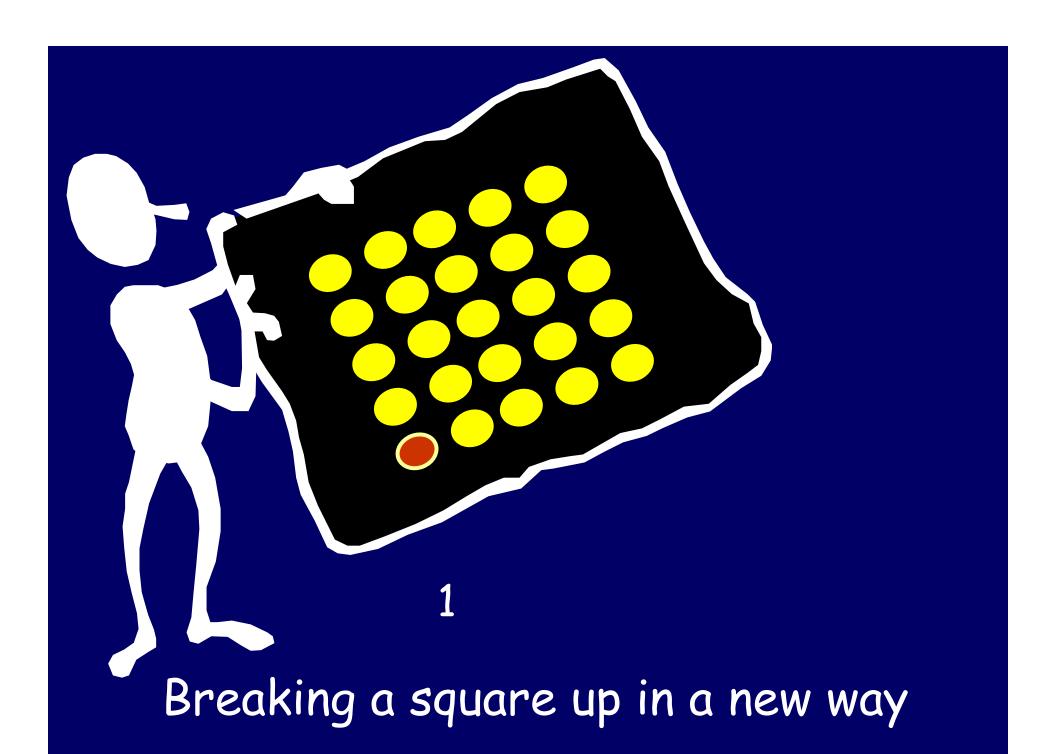
$$\Delta_n = 1 + 2 + 3 + ... + n-1 + n$$

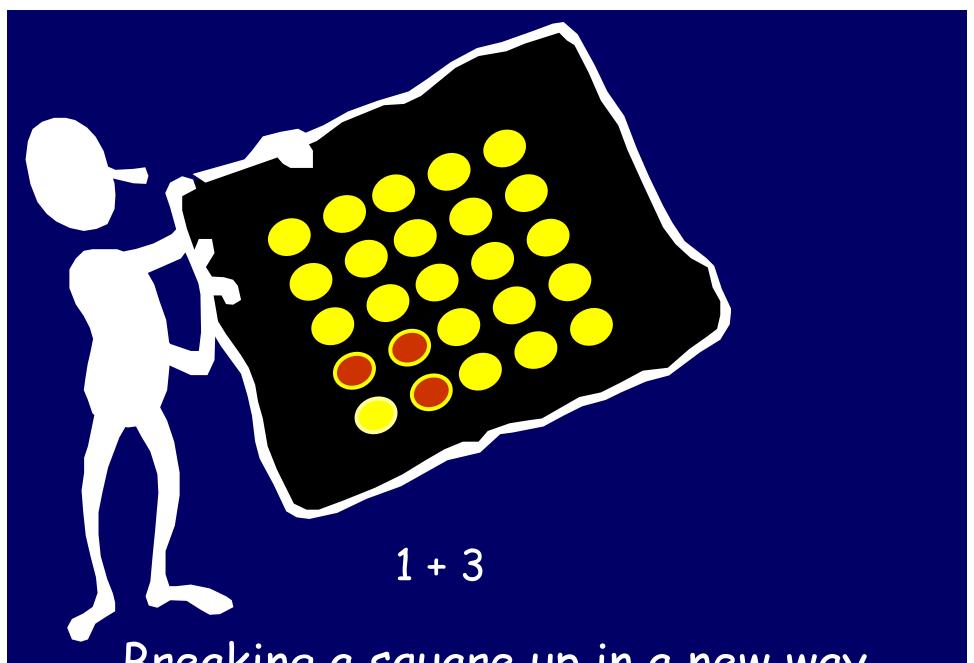
= $n(n+1)/2$

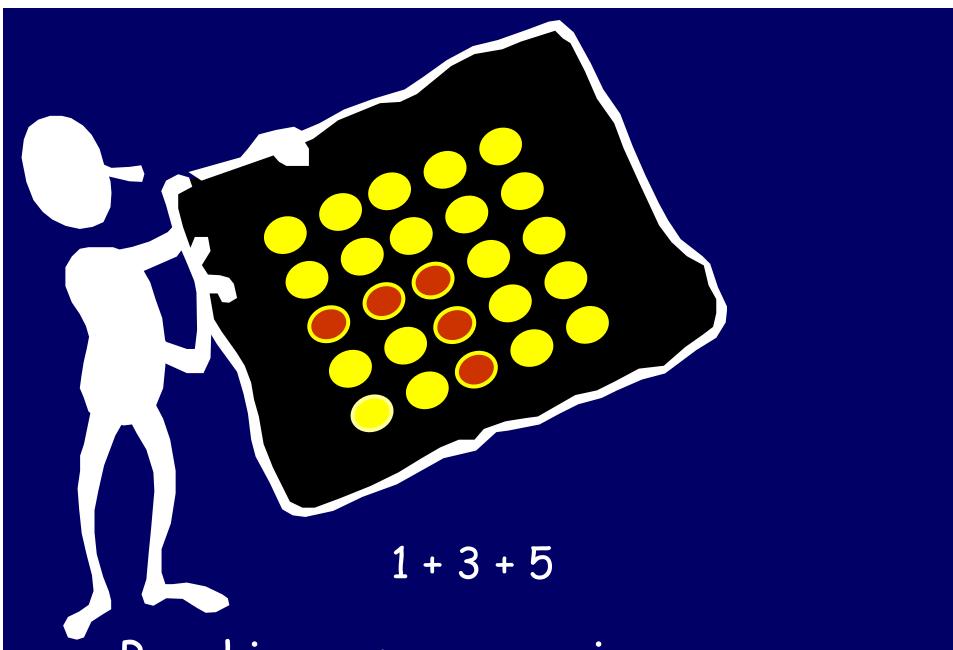


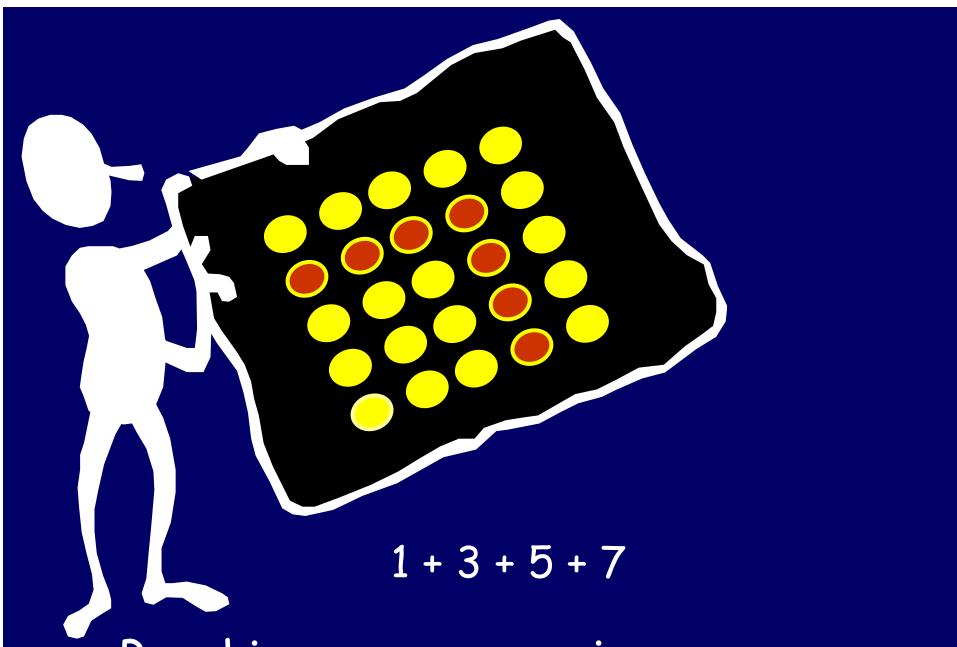


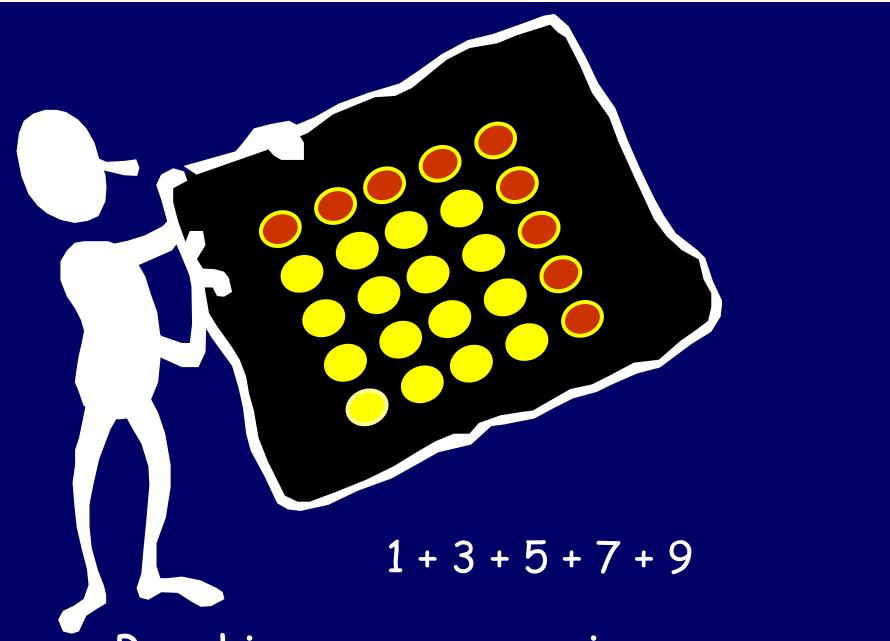


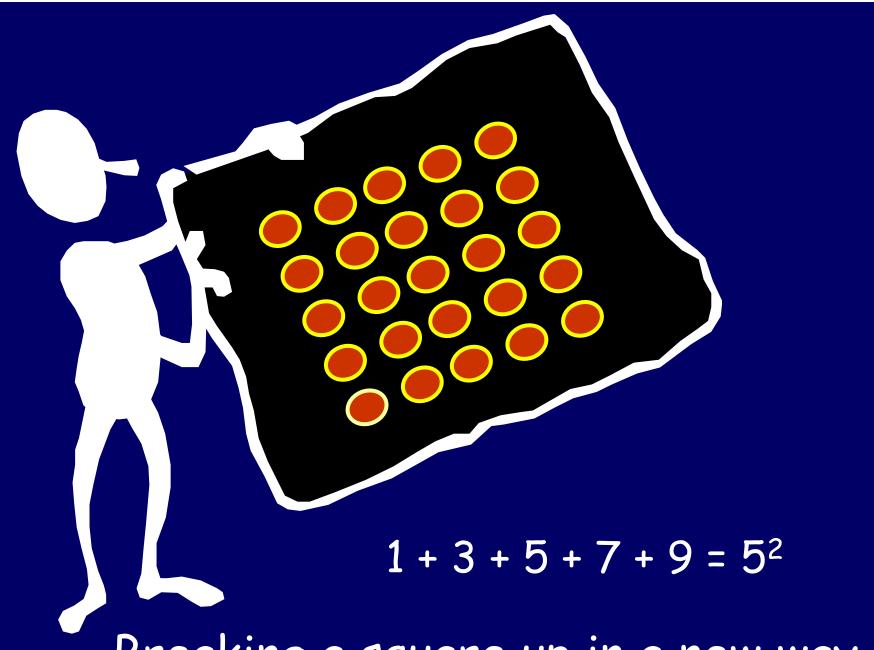






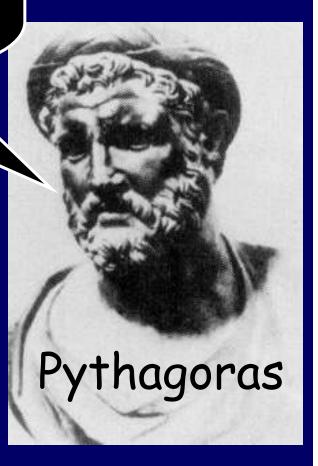




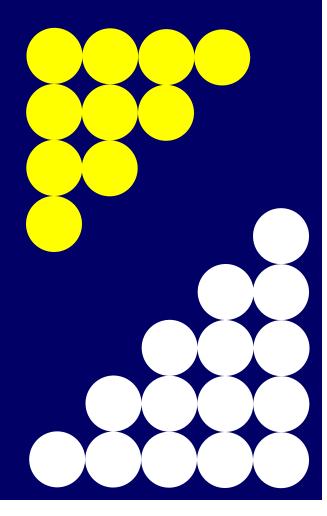


The sum of the first n odd numbers is n²

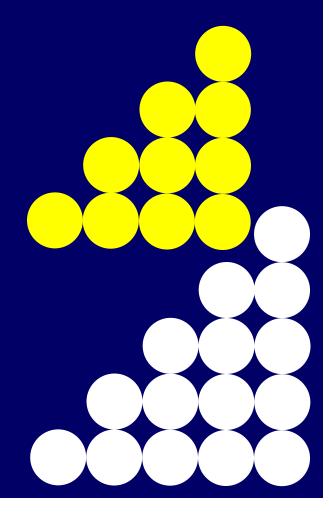
Here is an alternative dot proof of the same sum....



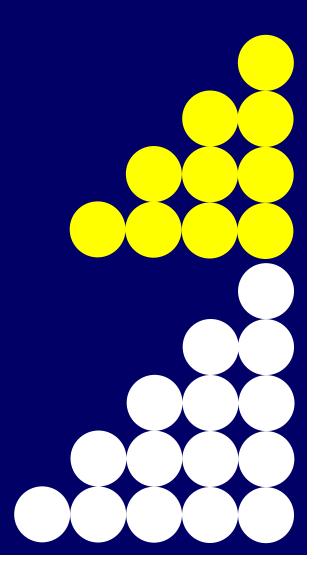
$$\Box_{n} = \Delta_{n} + \Delta_{n-1}$$
$$= n^{2}$$



$$\Box_{n} = \Delta_{n} + \Delta_{n-1}$$
$$= n^{2}$$

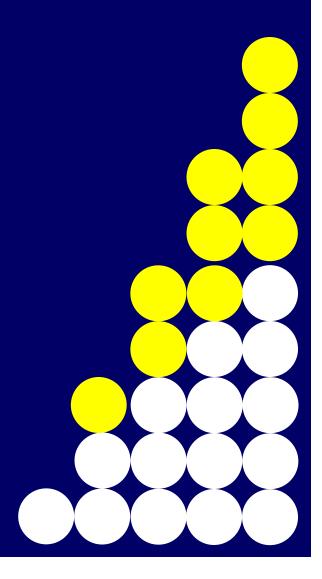


$$\square_{n} = \Delta_{n} + \Delta_{n-1}$$



$$\Box_{n} = \Delta_{n} + \Delta_{n-1}$$

= Sum of first n odd numbers



Same proof in high school notation

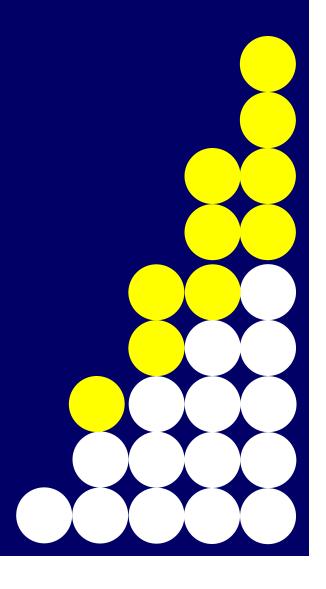
$$\Delta_n + \Delta_{n-1} =$$

$$1 + 2 + 3 + 4 \dots$$

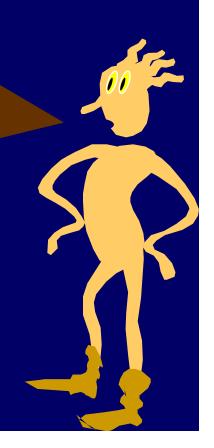
$$+ 1 + 2 + 3 + 4 + 5 \dots$$

$$1 + 3 + 5 + 7 + 9 \dots$$

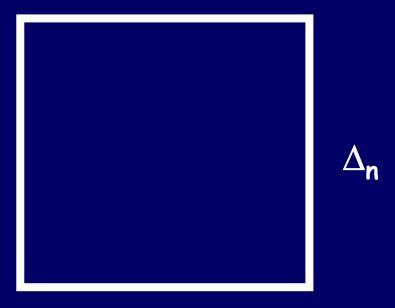
Sum of the first nodd numbers



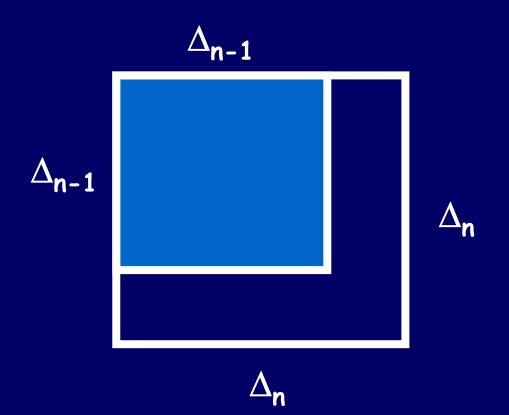
Check the next one out...



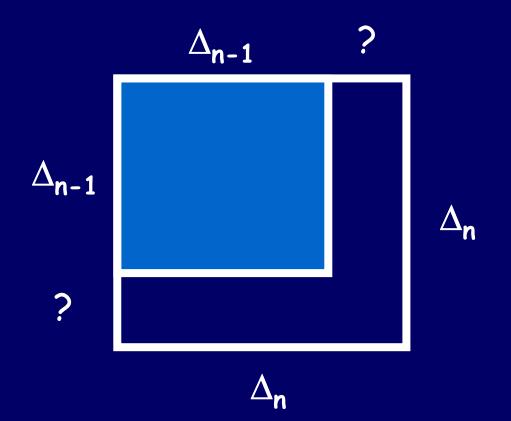
Area of
$$\Delta_n \times \Delta_n$$
 square = $(\Delta_n)^2$



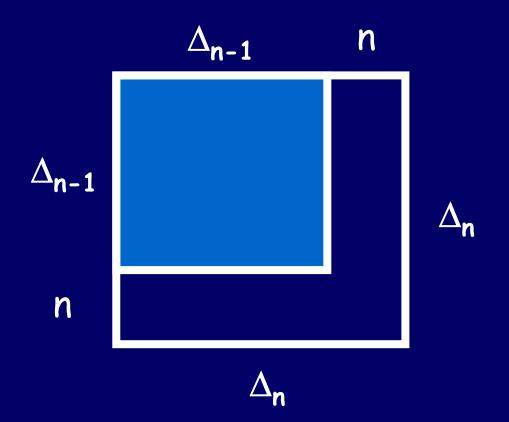
Area of $\Delta_n \times \Delta_n$ square = $(\Delta_n)^2$



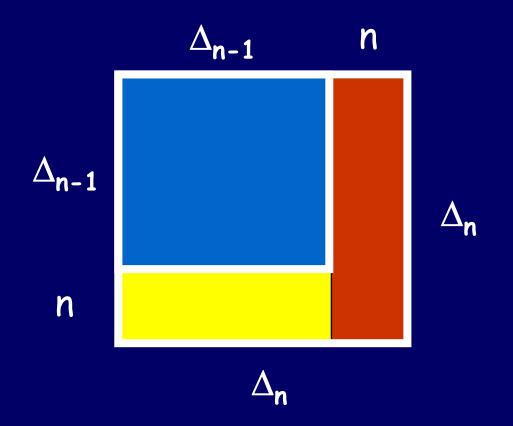
Area of
$$\Delta_n \times \Delta_n$$
 square = $(\Delta_n)^2$



Area of $\Delta_n \times \Delta_n$ square = $(\Delta_n)^2$



Area of $\Delta_n \times \Delta_n$ square = $(\Delta_n)^2$



Area of
$$\Delta_n \times \Delta_n$$
 square $= (\Delta_n)^2$
$$= (\Delta_{n-1})^2 + n\Delta_{n-1} + n\Delta_n$$

$$= (\Delta_{n-1})^2 + n(\Delta_{n-1} + \Delta_n)$$

$$= (\Delta_{n-1})^2 + n(\Box_n)$$

$$= (\Delta_{n-1})^2 + n(\Box_n)$$

$$= (\Delta_{n-1})^2 + n^3$$

$$\Delta_n$$

$$= (\Delta_{n-1})^2 + n^3$$

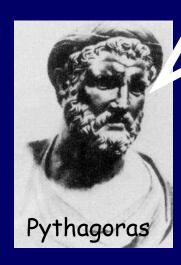
$$\Delta_n$$

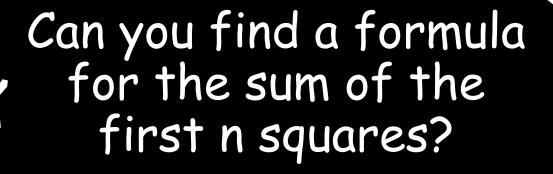
n

$$(\Delta_n)^2 = n^3 + (\Delta_{n-1})^2$$

= $n^3 + (n-1)^3 + (\Delta_{n-2})^2$
= $n^3 + (n-1)^3 + (n-2)^3 + (\Delta_{n-3})^2$
= $n^3 + (n-1)^3 + (n-2)^3 + ... + 1^3$

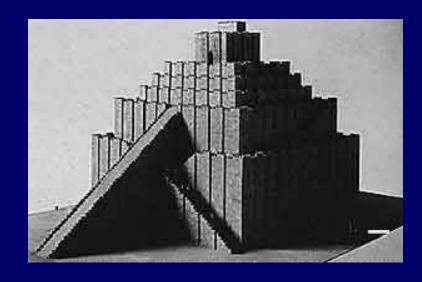
$$(\Delta_n)^2$$
 = $1^3 + 2^3 + 3^3 + ... + n^3$
= $[n(n+1)/2]^2$

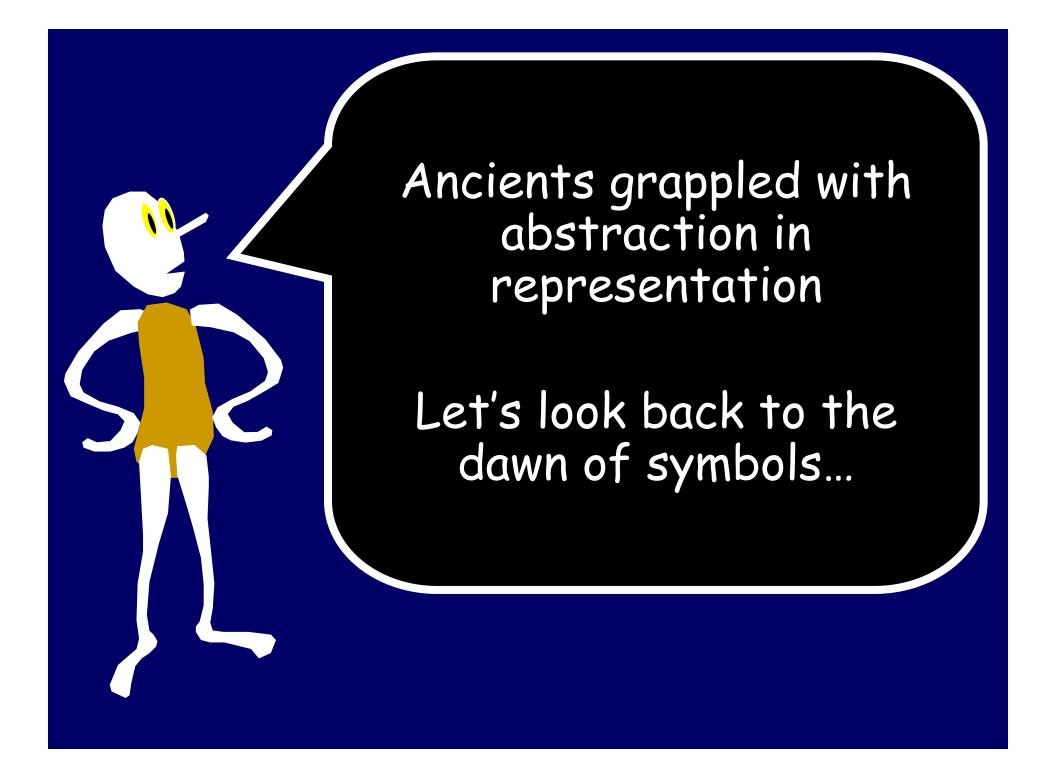




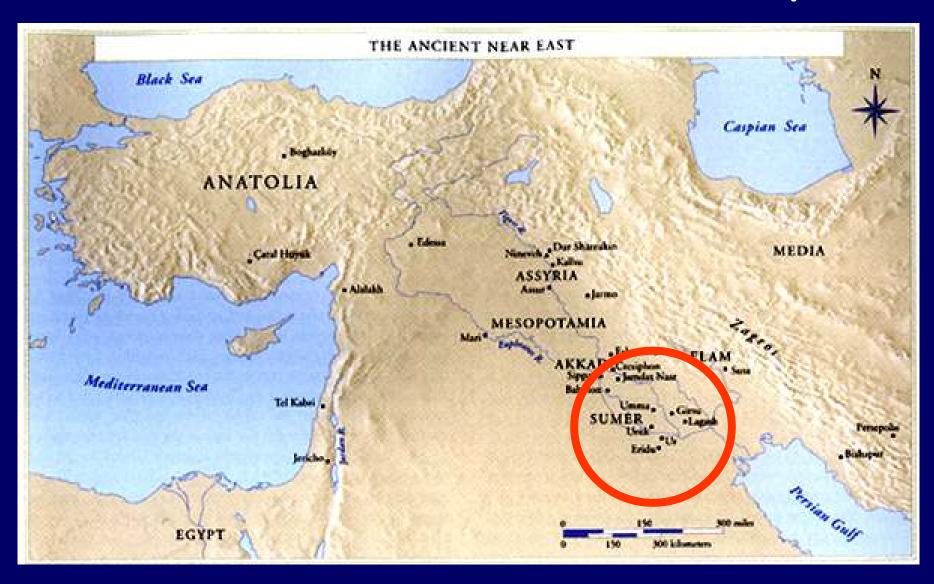
Babylonians needed this sum to compute the number of blocks in their pyramids

n(nx1)(2nx1)





Sumerians [modern Iraq]



Sumerians [modern Iraq]

8000 BC Sumerian tokens use multiple symbols to represent numbers

3100 BC Develop Cuneiform writing

2000 BC Sumerian tablet demonstrates base 10 notation (no zero), solving linear equations, simple quadratic equations

Biblical timing: Abraham born in the Sumerian city of Ur in 2000 BC

Babylonians Absorb Sumerians

1900 BC Sumerian/Babylonian Tablet:

Sum of first n numbers

Sum of first n squares

"Pythagorean Theorem"

"Pythagorean Triples"

some bivariate equations

1600 BC Babylonian Tablet:

Take square roots

Solve system of n linear

equations

Egyptians

6000 BC Multiple symbols for numbers

3300 BC Developed Hieroglyphics

1850 BC Moscow Papyrus:

Volume of truncated pyramid

1650 BC Rhind Papyrus [Ahmes/Ahmose]:

Binary Multiplication/Division

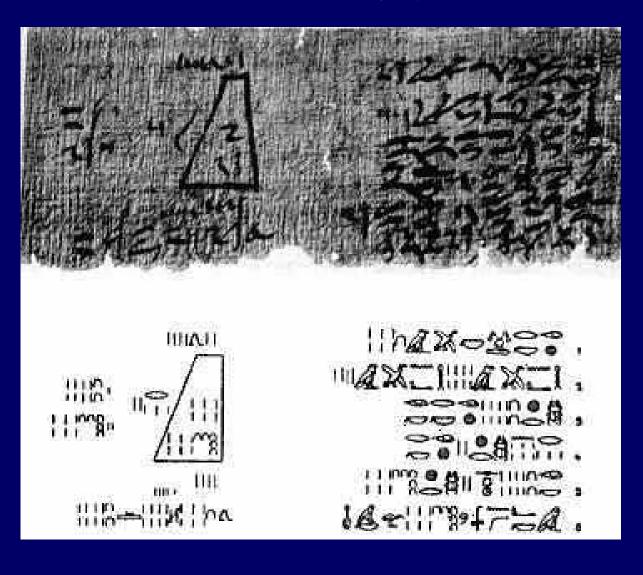
Sum of 1 to n

Square roots

Linear equations

Biblical timing: Joseph Governor is of Egypt

Moscow Papyrus



Harrappans

[Indus Valley Culture] Pakistan/India

3500 BC Perhaps the first writing system?!

2000 BC Had a uniform decimal system of weights and measures

China

1200 BC Independent writing system (Surprisingly late)

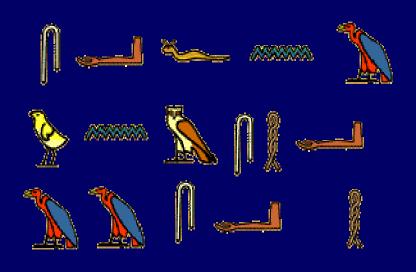
1200 BC I Ching [Book of changes]:
Binary system developed to do
numerology

Rhind Papyrus
Scribe Ahmes was Martin Gardener of his day!



Rhind Papyrus

Scribe Ahmes was Martin Gardener of his day!

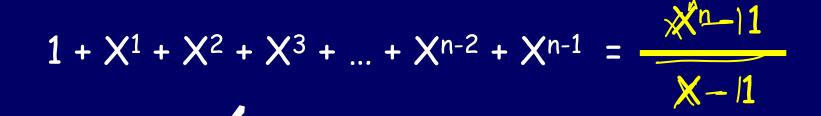


Rhind Papyrus

Scribe Ahmes was Martin Gardener of his day!

A man has 7 houses, Each house contains 7 cats, Each cat has killed 7 mice, Each mouse had eaten 7 ears of spelt, Each ear had 7 grains on it. What is the total of all of these?

Sum of powers of 7



The Geometric Series

A Frequently Arising Calculation

$$(X-1) (1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1})$$

$$= X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1} + X^{n}$$

$$- 1 - X^{1} - X^{2} - X^{3} - ... - X^{n-2} - X^{n-1}$$

$$= X^n - 1$$

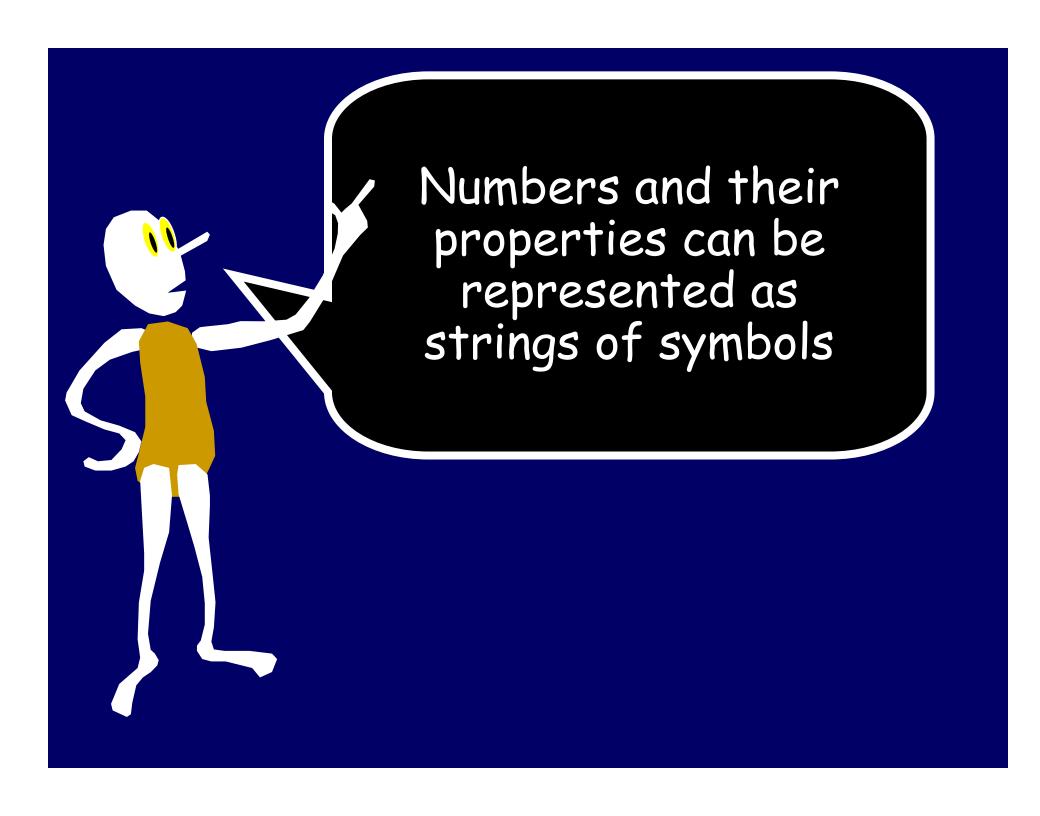
$$1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X - 1}$$
(when $x \neq 1$)

Geometric Series for X=2

$$1 + 2^{1} + 2^{2} + 2^{3} + ... + 2^{n-1} = 2^{n} - 1$$

$$1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X - 1}$$
(when $x \neq 1$)

$$1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{n-1}}=\frac{\left(\frac{1}{2}\right)^n-1}{\frac{1}{2}-1}$$



Strings Of Symbols

We take the idea of symbol and sequence of symbols as primitive

Let Σ be any fixed finite set of symbols. Σ is called an alphabet, or a set of symbols

Examples:

```
\Sigma = \{0,1,2,3,4\}
\Sigma = \{a,b,c,d,...,z\}
\Sigma = \text{all typewriter symbols}
\Sigma = \{a,b,d,d,...,z\}
```

Strings Over the Alphabet Σ

A string is a sequence of symbols from Σ

Let s and t be strings

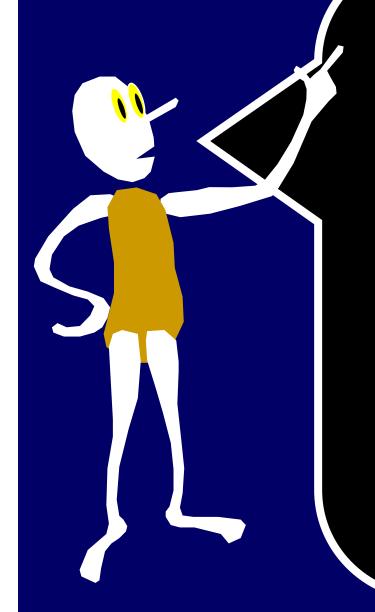
Then st denotes the concatenation of s and t i.e., the string obtained by the string s followed by the string t

Now define Σ^+ by these inductive rules:

$$\mathbf{x} \in \Sigma \Rightarrow \mathbf{x} \in \Sigma^{\scriptscriptstyle\mathsf{+}}$$
 s,t $\in \Sigma^{\scriptscriptstyle\mathsf{+}} \Rightarrow$ st $\in \Sigma^{\scriptscriptstyle\mathsf{+}}$

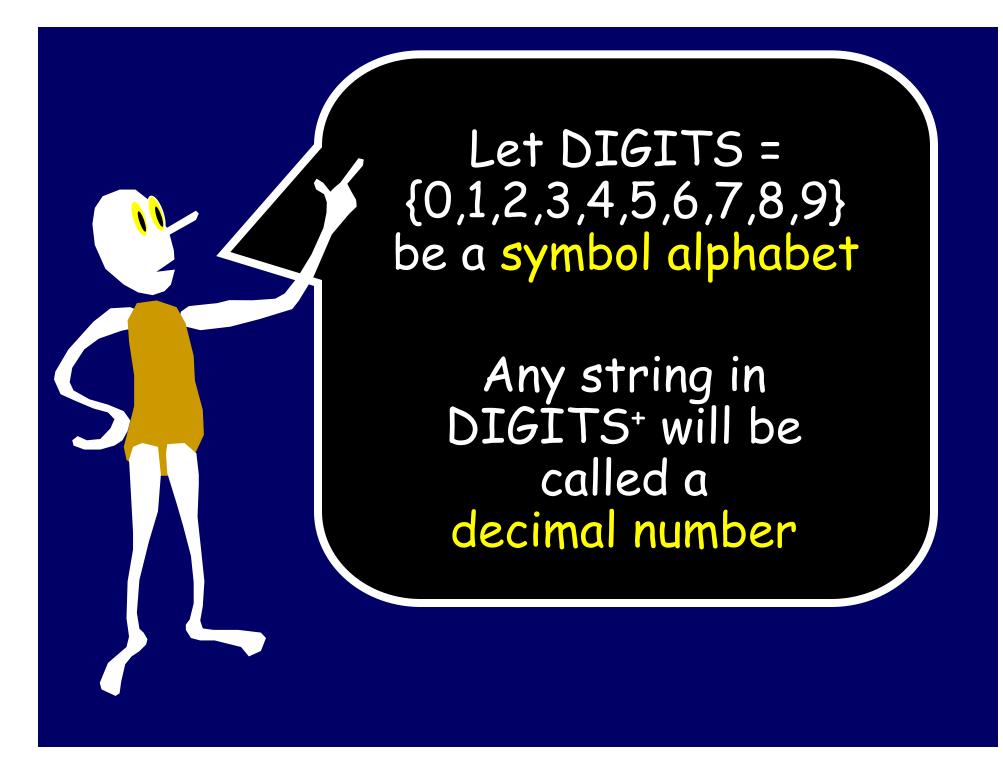
The Set Σ^*

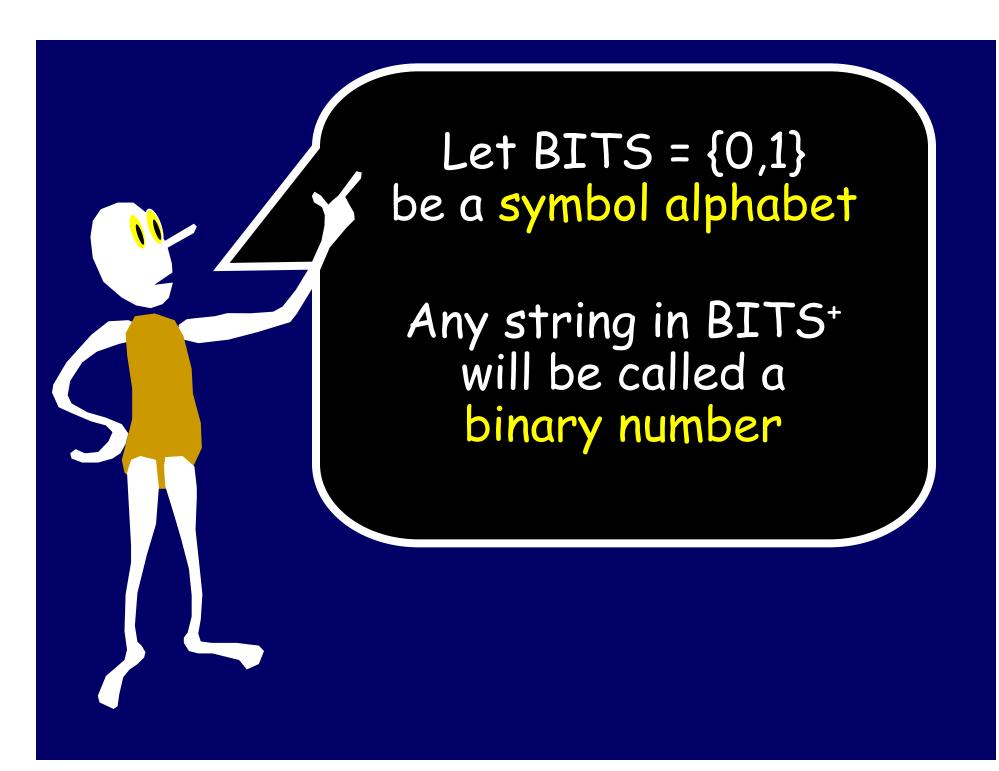
Define ε to be the empty string i.e., $X\varepsilon Y=XY$ for all strings X and Y ε is also called the string of length O Define $\Sigma^* = \Sigma^+ \cup \{\varepsilon\}$

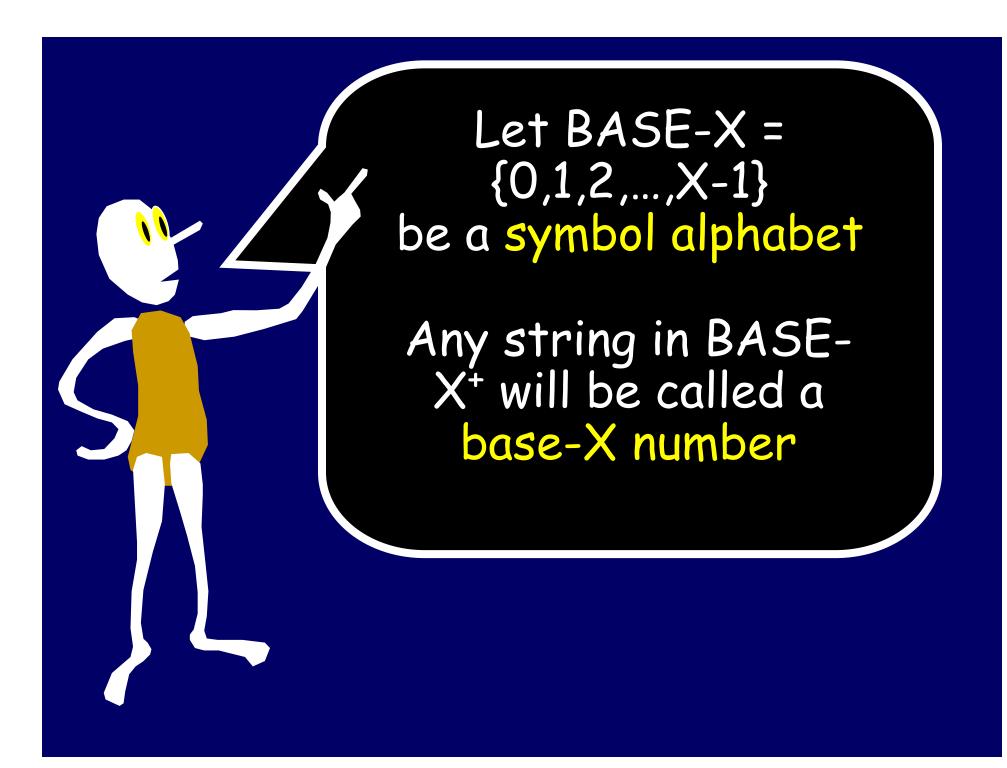


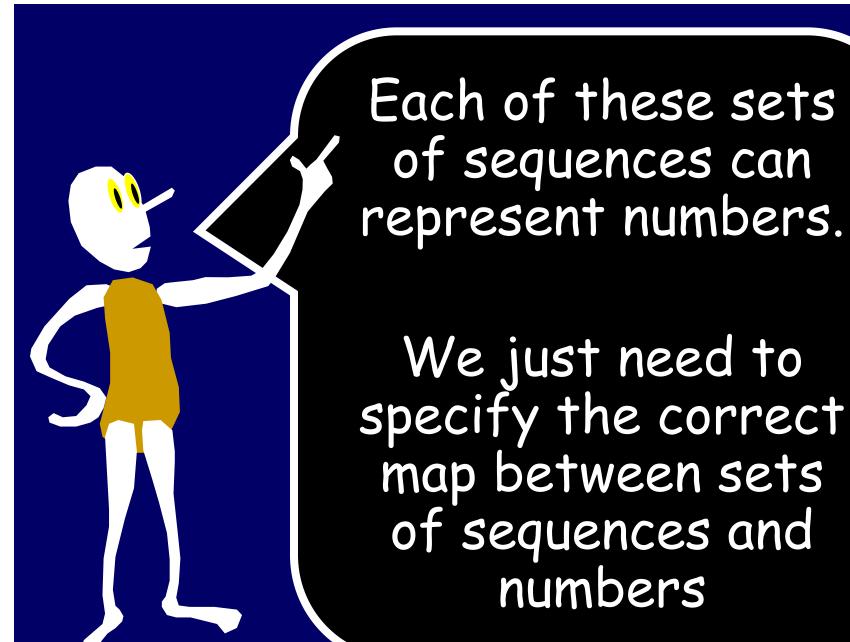
 Σ^{+} is set of all finite strings that we can make using (at least one) letters from Σ

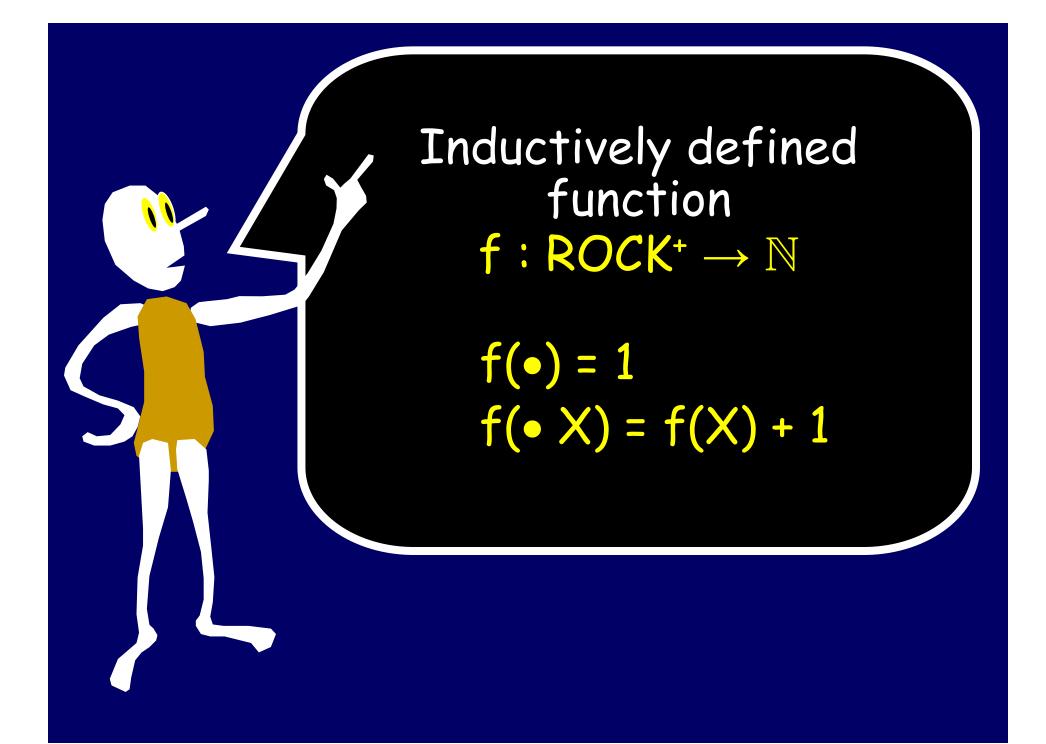
 Σ^* is the set of all finite strings that we can make using letters from Σ , including the empty string.

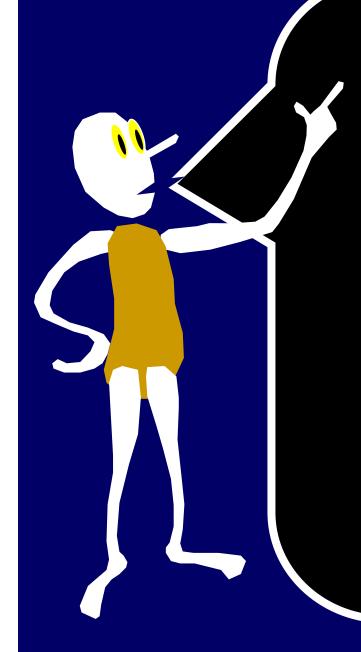












Inductively defined function

 $f: BITS^+ \rightarrow \mathbb{N}$

$$f(0) = 0; f(1) = 1$$

If |W| > 1 then W = Xb(b is a bit) f(Xb) = 2f(X) + b

$$f(a_{n-1} a_{n-2} ... a_0) =$$

$$a_{n-1}2^{n-1} + a_{n-2}2^{n-2} + ... + a_02^0$$

$$f(0) = 0$$
; $f(1) = 1$
 $f(Xb) = 2f(X) + b$
and

$$f(a_{n-1} a_{n-2} ... a_0) =$$

 $a_{n-1}2^{n-1} + a_{n-2}2^{n-2} + ... + a_02^0$

$$a_0 = 0$$
iff
$$f(a_{n-1}a_{n-2}...a_0) =$$

$$a_{n-1}2^{n-1} + a_{n-2}2^{n-2} + ... + a_02^0$$
is an even number

Theorem: Each natural has a binary representation

Base Case: 0 and 1 do

Induction hypothesis: Suppose all natural numbers less than n have a binary representation

Induction Step: Note that n = 2m+b for some m < n, with b = 0 or 1

Represent n as the left-shifted sequence for m concatenated with the symbol for b

No Leading Zero Binary (NLZB)

A binary string that is either 0 or 1, Or has length > 1, and does not have a leading zero

1 Is in NLZB

000001101001 Is NOT in NLZB

O Is in NLZB

01 Is NOT in NLZB

10000001 Is in NLZB

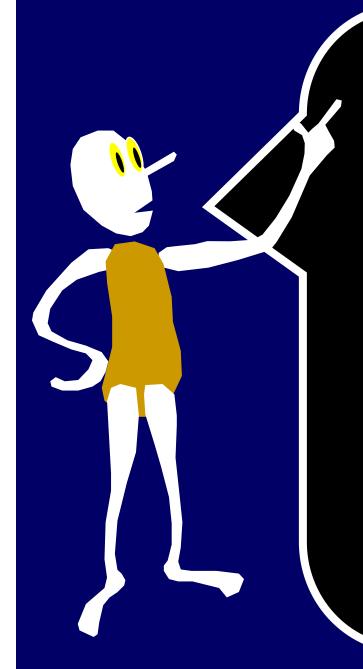
Theorem: Each natural has a unique NLZB representation

Base Case: 0 and 1 do

Induction hypothesis: Suppose all natural numbers less than n have a unique NLZB representation

Induction Step: Suppose n = 2m+b has 2 NLZB representations

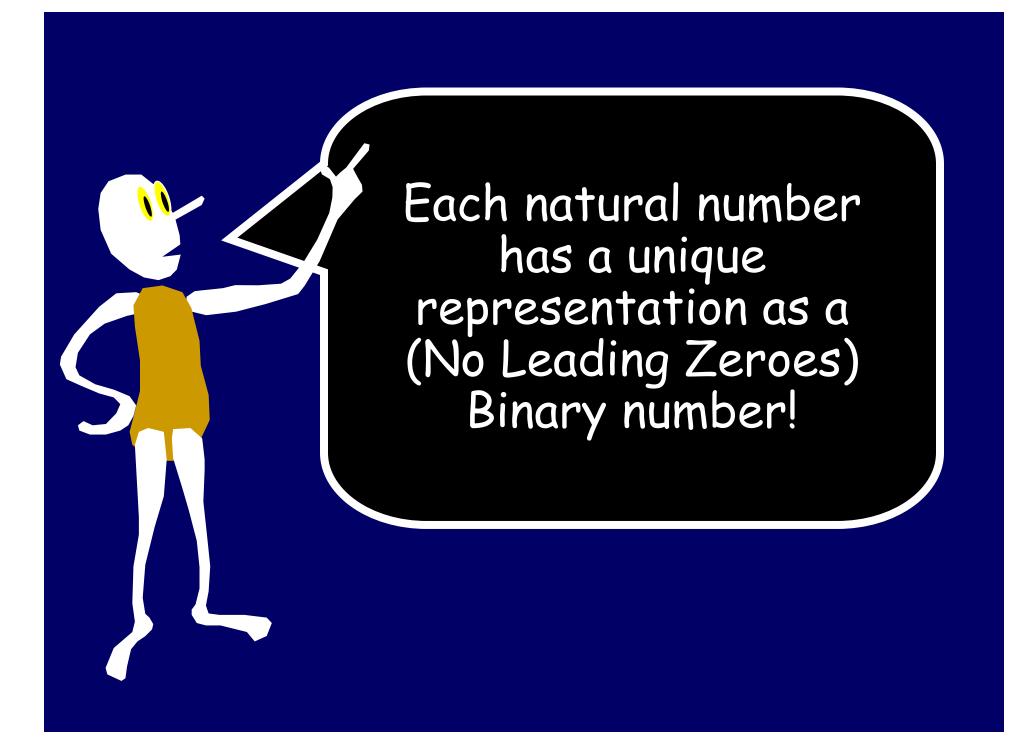
Their parity bit b must be identical Hence, m also has two distinct NLZB representations, which contradicts the induction hypothesis. So n must have a unique representation



Inductive definition is great for showing UNIQUE representation:

f(Xb) = 2f(X) + b

Let n be the smallest number reprinted by two different binary sequences. They must have the same parity bit, thus we can make a smaller number that has distinct representations



BASE X Representation

 $S = a_{n-1} a_{n-2} ... a_1 a_0$ represents the number: $a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + ... + a_0 X^0$

Base 2 [Binary Notation]

101 represents: $1(2)^2 + 0(2^1) + 1(2^0)$

Base 7

015 represents: $0(7)^2 + 1(7^1) + 5(7^0)$

= 00000000000

Bases In Different Cultures

Sumerian-Babylonian: 10, 60, 360

Egyptians: 3, 7, 10, 60

Maya: 20

Africans: 5, 10

French: 10, 20

English: 10, 12, 20

BASE 10 Representation

 $S = (a_{n-1} a_{n-2} \dots a_1 a_0)_{10}$ represents the number:

$$a_{n-1} 10^{n-1} + a_{n-2} 10^{n-2} + ... + a_0 10^0$$

Largest number representable in base-10 with n "digits"

=
$$(9999999...9)_X$$
 [with n 9's]
= $9 \times (10^{n-1} + 10^{n-2} + ... + 10^0)$
= $(10^n - 1)$

BASE X Representation

 $S = (a_{n-1} a_{n-2} ... a_1 a_0)_X$ represents the number:

$$a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + ... + a_0 X^0$$

Largest number representable in base-X with n "digits"

=
$$(X-1 \ X-1 \ X-1 \ X-1 \ X-1 \ ... \ X-1)_X$$

= $(X-1)(X^{n-1} + X^{n-2} + ... + X^0)$
= $(X^n - 1)$

Fundamental Theorem For Binary

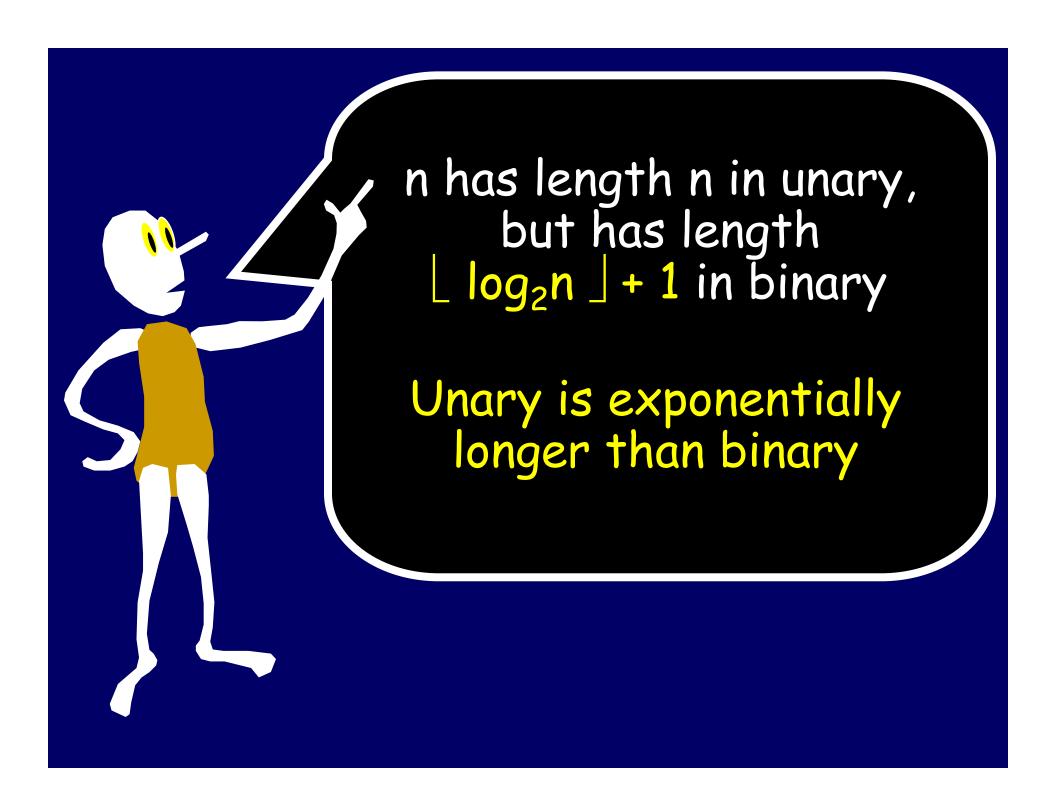
Each of the numbers from 0 to $2^{n}-1$ is uniquely represented by an n-bit number in binary

k uses $\lfloor \log_2 k \rfloor + 1$ digits in base 2

Fundamental Theorem For Base-X

Each of the numbers from 0 to $X^{n}-1$ is uniquely represented by an n-"digit" number in base X

k uses $\lfloor \log_X k \rfloor + 1$ digits in base X



Other Representations: Egyptian Base 3

Conventional Base 3: Each digit can be 0, 1, or 2

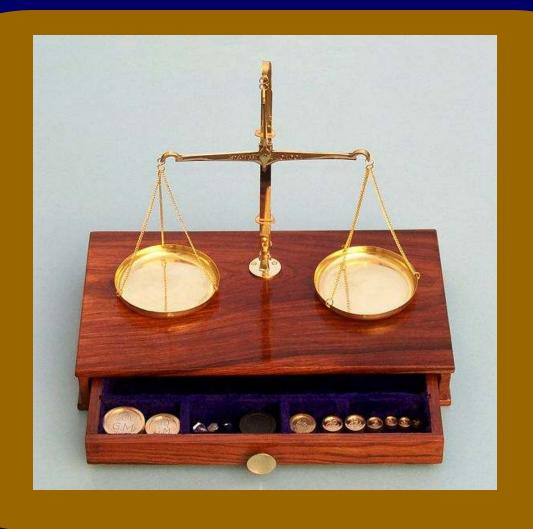
a₂a₁a₀ a₂. 3² + a₁. 3 + a₀

Here is a strange new one: Egyptian Base 3 uses -1, 0, 1

Example: 1-1-1=9-3-1=5

We can prove a unique representation theorem

How could this be Egyptian?
Historically, negative
numbers first appear in the
writings of the Indian
mathematician Brahmagupta
(628 AD)



One weight for each power of 3 Left = "negative". Right = "positive"

Unary and Binary

Triangular Numbers
Dot proofs

Geometric sum

$$(1+x+x^2 + ... + x^{n-1}) = (x^n - 1)/(x-1)$$

Base-X representations

unique binary representations proof for no-leading zero binary

Study Bee

k uses $\lfloor \log_2 k \rfloor + 1 = \lceil \log_2 (k+1) \rceil$ digits in base 2

Largest length n number in base X