Great Theoretical Ideas In Computer Science

Anupam Gupta

CS 15-251

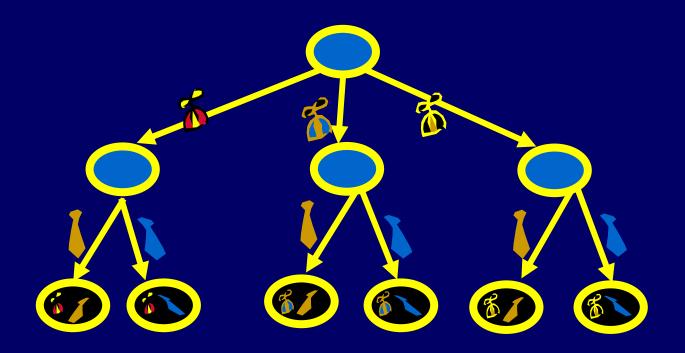
Fall 2006

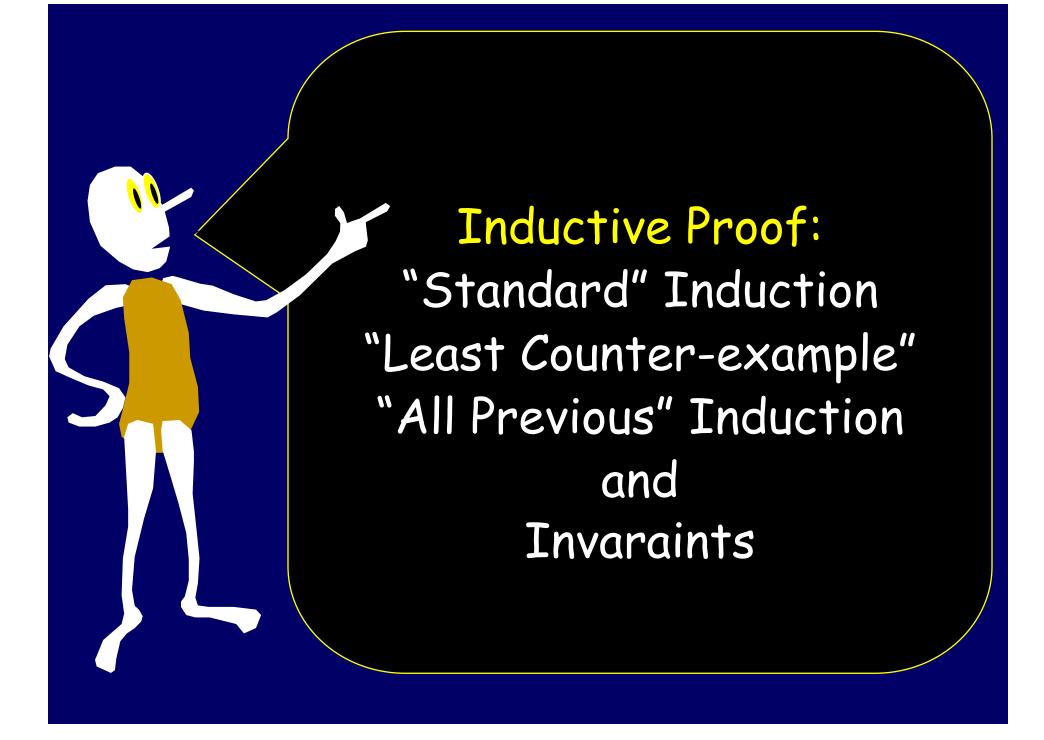
Lecture 3

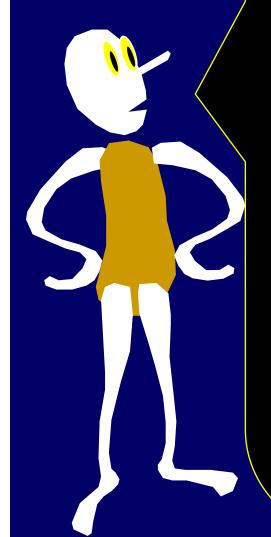
Sept 5, 2006

Carnegie Mellon University

Induction II: Inductive Pictures







Theorem? $(k \ge 0)$ 1+2+4+8+...+2^k = 2^{k+1} -1

Try it out on small examples:

$$2^{0}$$
 = 2^{1} -1
 2^{0} + 2^{1} = 2^{2} -1
 2^{0} + 2^{1} + 2^{2} = 2^{3} -1

$S_k \equiv \text{``1+2+4+8+...+2}^k = 2^{k+1} - 1\text{''}$ Use induction to prove $\forall k \geq 0$, S_k

hence

$$|+2+\cdots+2^{k}+2^{kH}|$$

 $=(1+2+\cdots+2^{k})+2^{kH}$
 $=(2^{kH}-1)+2^{kH}=2.2^{kH}-1$
 $=2^{kH^2}-1$ $\Rightarrow S_{kh}$ in the

$S_k \equiv 1+2+4+8+...+2^k = 2^{k+1}-1^n$ Use induction to prove $\forall k \geq 0$, S_k

(2)
$$(S_k \Rightarrow) S_{kn}) \forall k \geq 0$$

$S_k \equiv 1+2+4+8+...+2^k = 2^{k+1}-1$ Use induction to prove $\forall k \geq 0$, S_k

Establish "Base Case": S₀. We have already checked it.

Establish "Domino Property": $\forall k \geq 0$, $S_k \Rightarrow S_{k+1}$

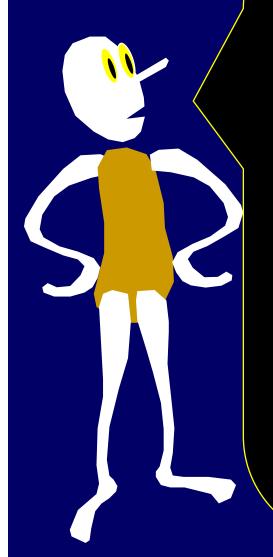
"Inductive Hypothesis" Sk:

$$1+2+4+8+...+2^{k} = 2^{k+1}-1$$

Add 2k+1 to both sides:

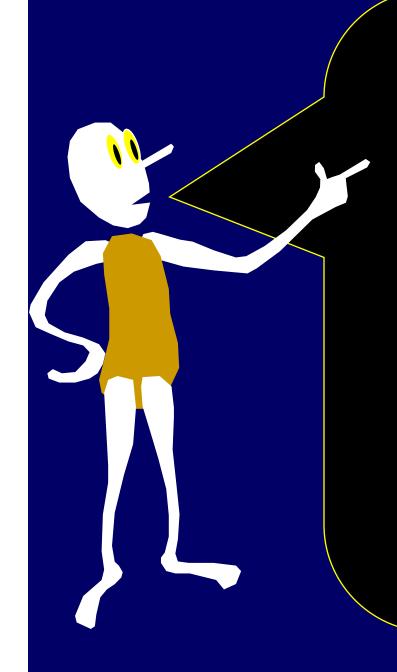
$$1+2+4+8+...+2^{k}+2^{k+1}=2^{k+1}+2^{k+1}-1$$

$$1+2+4+8+...+2^{k}+2^{k+1}=2^{k+2}-1$$



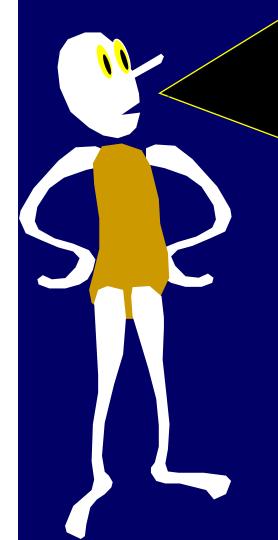
Fundamental lemma of the powers of two:

The sum of the first n powers of 2, is one less than the next power of 2.



In Lecture #2, we also saw:

Inductive Definitions
of Functions
and
Recurrence Relations



Inductive Definition of n! [said "n factorial"]

$$0! = 1$$

$$n! = n \times (n-1)!$$

Definition of factorial 0! = 1; $n! = n \times (n-1)!$

Does this bottom-up program really compute n!?

$0! = 1; n! = n \times (n-1)!$

```
function Fact(n) {
    F:=1;
    For x = 1 to n do {
        F:=F*x;
        // Loop Invariant: F=x! here}
    Return F
}
```

Loop Invariant: F=x!

True for x=0.

If true after k iterations, then true after k+1 iterations.

Inductive Definition of T(n)

$$T(1) = 1$$

 $T(n) = 4T(n/2) + n$

Notice that T(n) is inductively defined only for positive powers of 2, and undefined on other values.

$$T(1)=1$$
 $T(2)=6$ $T(4)=28$ $T(8)=120$

Guess a closed form formula for T(n). Guess G(n)

$$G(n) = 2n^2 - n$$

Let the domain of G be the powers of two.

$$G(1)=1$$
 $G(2)=6$ $G(4)=28$ $G(8)=120$

Two equivalent functions?

$$G(n) = 2n^2 - n$$

Let the domain of G be the powers of two.

$$T(1) = 1$$

 $T(n) = 4 T(n/2) + n$

Domain of T is the powers of two.

Inductive Proof of Equivalence

$$G(n) = 2n^2 - n$$

$$T(1) = 1$$

$$T(n) = 4 T(n/2) + n$$

Inductive Proof of Equivalence

$$G(n) = 2n^2 - n$$

$$T(1) = 1$$

$$T(n) = 4 T(n/2) + n$$

Inductive Proof of Equivalence

```
Base: G(1) = 1 and T(1) = 1
```

Induction Hypothesis:

$$T(x) = G(x)$$
 for $x < n$, x being a prove of 2.
Hence: $T(n/2) = G(n/2) = 2(n/2)^2 - n/2$

$$G(n) = 2n^2 - n$$

$$T(1) = 1$$

$$T(n) = 4 T(n/2) + n$$

$$T(n) = 4 T(n/2) + n$$

$$= 4 G(n/2) + n$$

$$= 4 [2(n/2)^{2} - n/2] + n$$

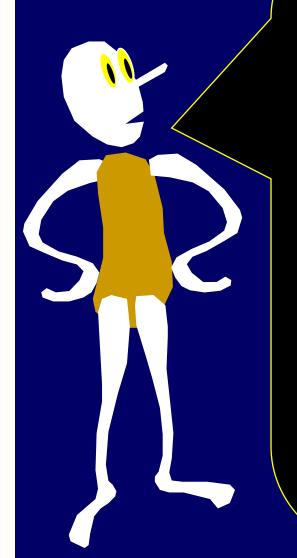
$$= 2n^{2} - 2n + n$$

$$= 2n^{2} - n$$

$$= G(n)$$

[by definition of G(n/2)]

[by definition of G(n)]



We inductively proved the assertion that \forall $n \ge 1$, T(n) = G(n).

Giving a formula for T(n) with no sums or recurrences is called "solving the recurrence for T(n)".

Solving Recurrences: Guess and Verify

Guess:
$$G(n) = 2n^2 - n$$

(1)
$$G(1) = 21^2 - 1 = 1$$

$$T(1) = 1$$

 $T(n) = 4 T(n/2) + n$

$$\begin{array}{ll}
\widehat{I} & \widehat{G(n)} = 2n^2 - n \\
&= 4\left[2(\frac{n}{2})^2 - \frac{n}{2}\right] + 2 * \frac{n}{2} \\
&= 4G(\frac{n}{2}) + n
\end{array}$$

Solving Recurrences: Guess and Verify

Guess: $G(n) = 2n^2 - n$

$$T(1) = 1$$

 $T(n) = 4 T(n/2) + n$

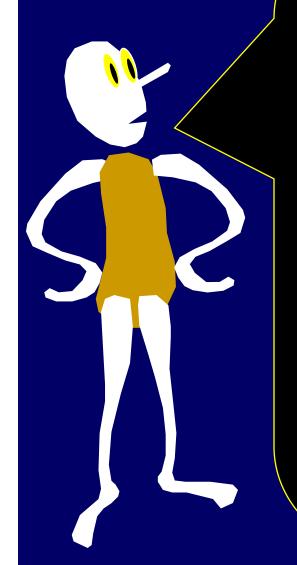
Verify:
$$G(1) = 1$$

and $G(n) = 4 G(n/2) + n$

Similarly:
$$T(1) = 1$$

and $T(n) = 4 T(n/2) + n$

So
$$T(n) = G(n)$$



That was another view of the same "guess-and-verify" proof of G(n) = T(n).

We showed that G = T at the base case, and that G satisfies the same recurrence relation!

Guess:
$$T(n) = an^2 + bn + c$$

for some a,b,c

$$T(1) = 1$$

 $T(n) = 4 T(n/2) + n$

$$T(1) = 1$$

=) $a \cdot 1^{2} + b \cdot 1 + c = 1$
=) $a + b + c = 1$

Guess:
$$T(n) = an^2 + bn + c$$

for some a,b,c

$$T(1) = 1$$

 $T(n) = 4 T(n/2) + n$

$$an + bn + c = 4 \left[a(\frac{1}{2})^{2} + b(\frac{1}{2}) + c \right] + n$$

$$= an^{2} + 2bn + 4c + n$$

$$\Rightarrow bn + n + 3c = 0 \qquad \forall n$$

$$\Rightarrow (b+1)n + 3c = 0 \qquad \forall n \text{ power } 42.$$

$$\Rightarrow b+1 = 0 \quad , c=0$$

$$\Rightarrow b = -1, c=0$$

Guess:
$$T(n) = an^2 + bn + c$$

for some a,b,c

$$T(1) = 1$$

 $T(n) = 4 T(n/2) + n$

$$a+b+e = 1$$
 $b = -1$
 $C = 0$
 $\Rightarrow a = 2$
 $T(a) = 2n^2 + (-1) \cdot n + 0$
 $= 2n^2 - n$

```
Guess: T(n) = an^2 + bn + c
for some a,b,c
```

$$T(1) = 1$$

 $T(n) = 4 T(n/2) + n$

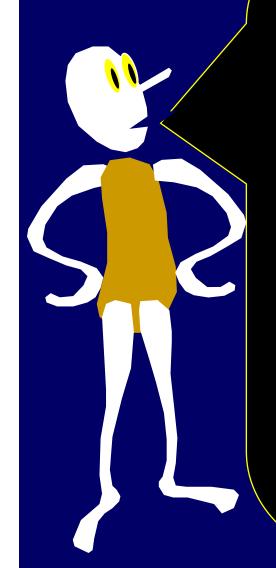
Calculate:
$$T(1) = 1 \Rightarrow a + b + c = 1$$

$$T(n) = 4 T(n/2) + n$$

$$\Rightarrow an^{2} + bn + c = 4 [a(n/2)^{2} + b(n/2) + c] + n$$

$$= an^{2} + 2bn + 4c + n$$

$$\Rightarrow (b+1)n + 3c = 0$$
Therefore: b=-1 c=0 a=2

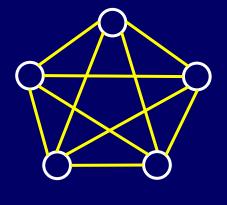


A computer scientist not only deals with numbers, but also with

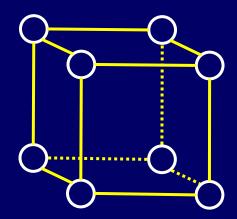
finite strings of symbols

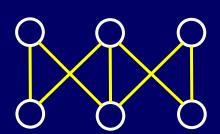
Very visual objects called graphs

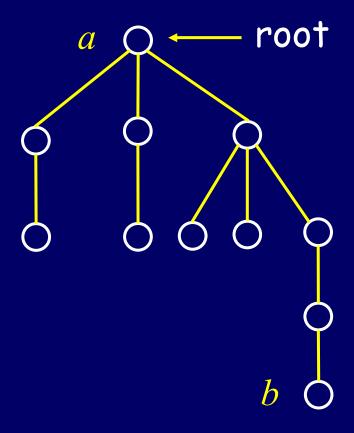
And <u>especially</u> the special graphs called trees



Graphs







Definition: Graphs

A graph G = (V,E) consists of

- a finite set V of vertices (also called "nodes"), and
- a finite set E of edges.

Each edge is a set {a, b} of two different vertices.

n.b. A graph may not have self loops or multiple edges (unless mentioned otherwise)

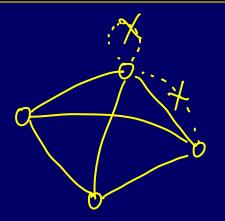
Visualization: graphs

A graph G = (V,E) consists of

- · a finite set V of vertices (also called "nodes"), and
- a finite set E of edges.

Each edge is a set {a, b} of two different vertices.

n.b. A graph may not have self loops or multiple edges (unless mentioned otherwise)



Any graph on w nodes

has at most $\frac{n(n-1)}{2}$ edges.

Definition: Directed Graphs

A graph G = (V,E) consists of

- a finite set V of vertices (nodes) and
- a finite set E of edges.

Each edge is an <u>ordered</u> pair <a,b> of two different vertices.

n.b. A directed graph may not have self loops or multiple edges (unless mentioned otherwise)

Visualization: Directed graphs

A graph G = (V,E) consists of

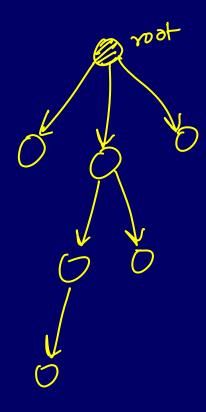
- a finite set V of vertices (nodes) and
- a finite set E of edges.

Each edge is an ordered pair <a,b> of two different vertices.

n.b. A directed graph may not have self loops or multiple edges (unless mentioned otherwise).

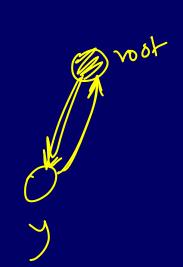
Definition: Rooted Tree

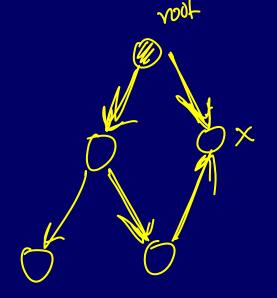
A rooted tree is a directed graph with one special node called the root and the property that each node has a <u>unique path</u> from the root to itself.



Are these trees?

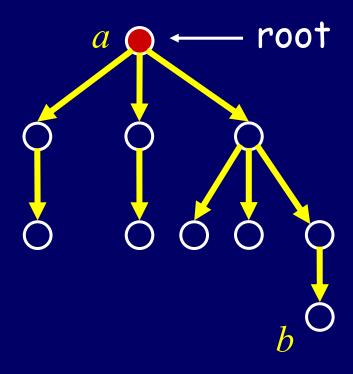
A rooted tree is a directed graph with one special node called the root and the property that each node has a <u>unique path</u> from the root to itself.





Definition: Rooted Tree

A rooted tree is a directed graph with one special node called the root and the property that each node has a <u>unique path</u> from the root to itself.



Terminology: Tree

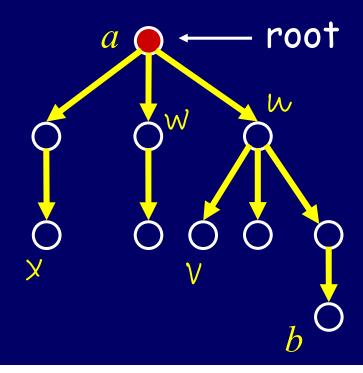
Child: If $\langle u,v \rangle \in E$, we say v is a child of u

Parent: If $\langle u,v \rangle \in E$, we say u is the parent of v

Leaf: If x has no children, we say x is leaf.

Siblings: If u and w have the same parent,

they are siblings.



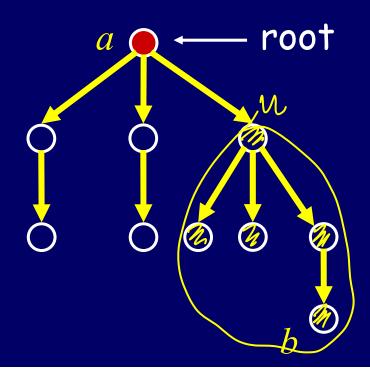
Terminology: Tree

Descendants of u:

The set of nodes reachable from u (including u).

Sub-tree rooted at u:

Descendants of u and all the edges between them. (u is designated as the root of this tree.)



Classical Visualizations of Trees

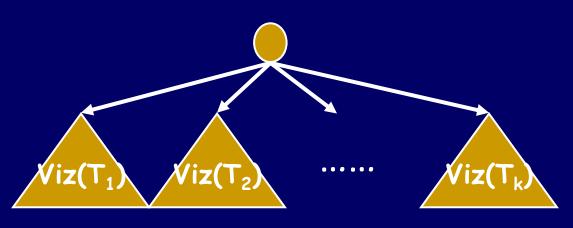
Here's the inductive rule:

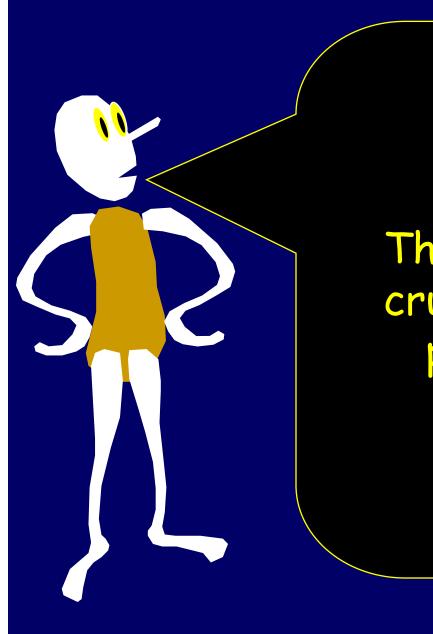
If G is a single node

$$Viz(G) =$$

If G consists of root r with sub-trees T_1 , T_2 , ..., T_k

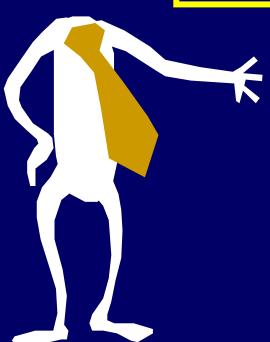
$$Viz(G) =$$

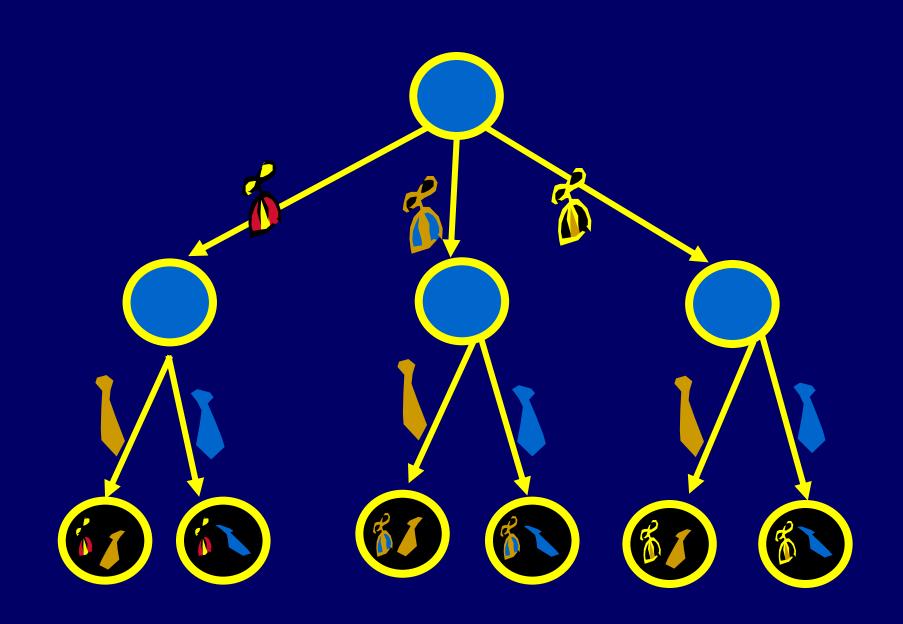




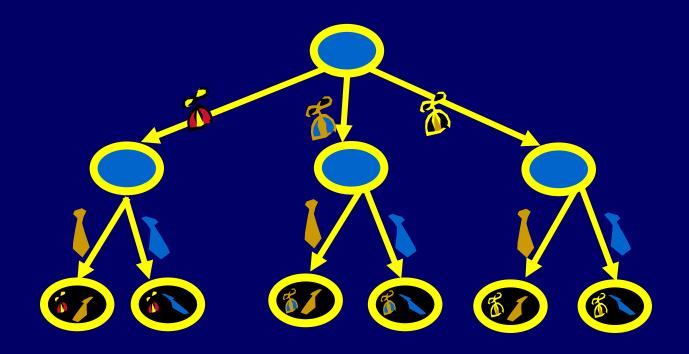
This visualization will be crucial to understanding properties of trees.

I own 3 beanies and 2 ties. How many beanie/tie combos might I wear to the ball tonight?





Choice Tree

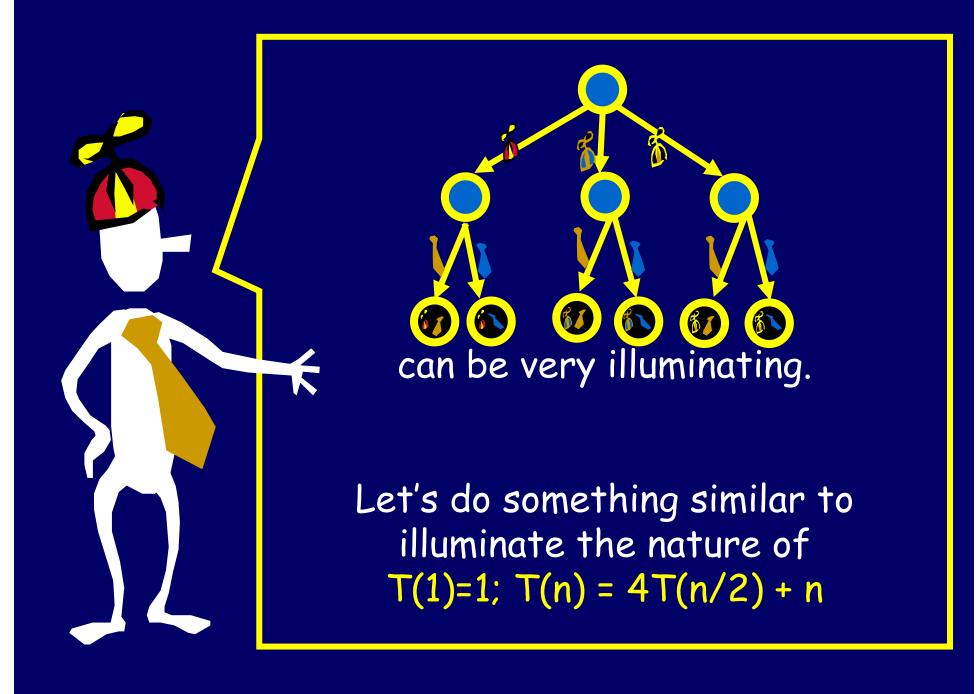


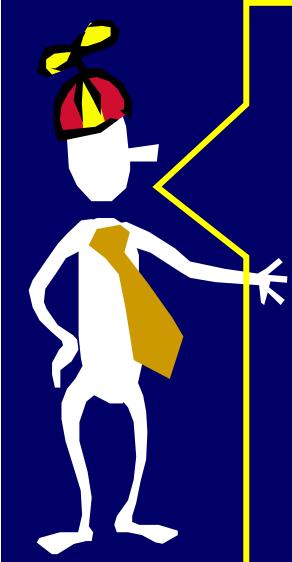
A choice tree is a tree with an object called a "choice" associated with each edge and a label called an "outcome" on each leaf.

Definition: Labeled Trees

```
A tree "edge labeled by S" is a tree T = (V,E) with an associated function Edge-Label: E \rightarrow S
```

A tree "node labeled by S" is a tree T = (V,E) with an associated function Node-Label: $V \rightarrow S$

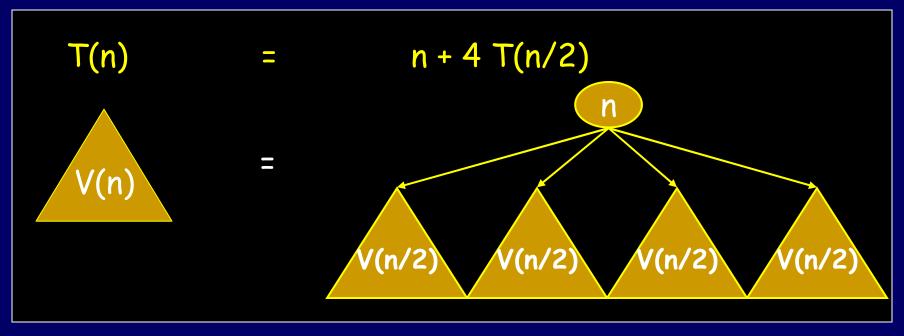


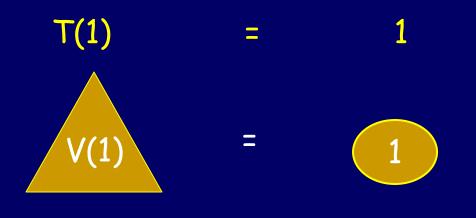


T(1)=1; T(n)=4T(n/2)+n

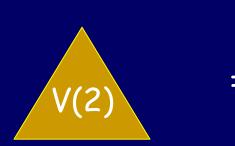
For each n (power of 2), we will define a tree V(n) that is node-labeled by numbers.

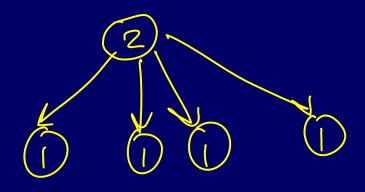
This tree V(n) will give us an incisive picture of the recurrence relation T(n).

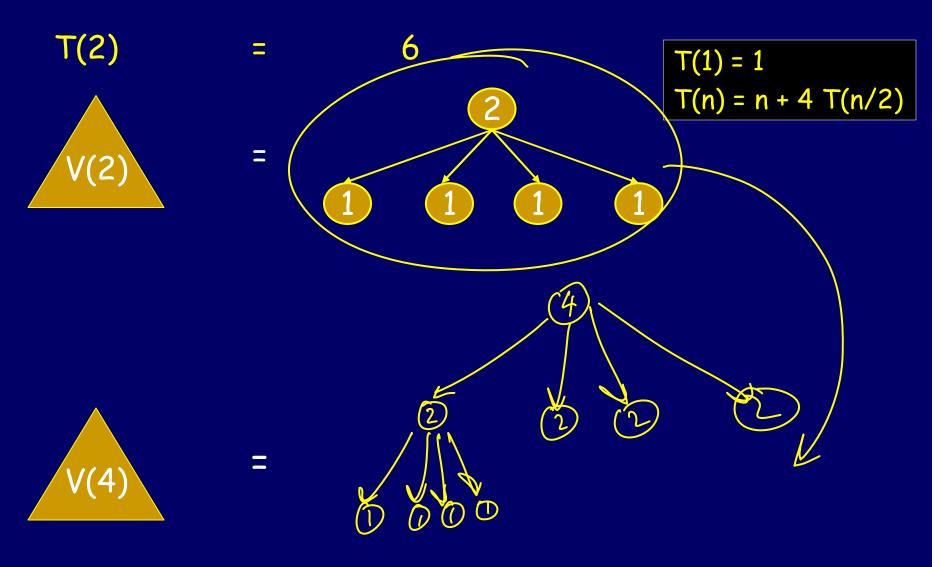


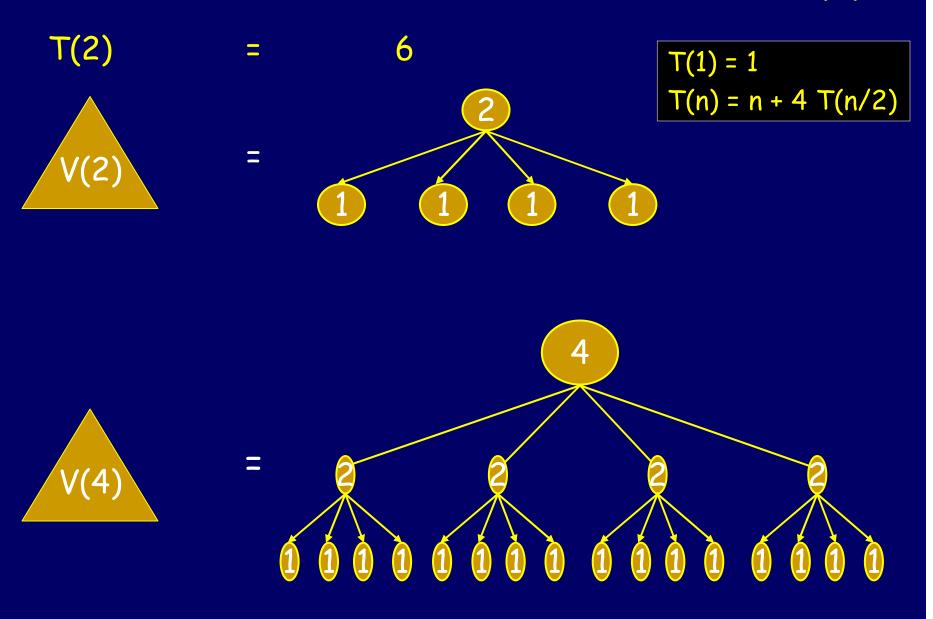


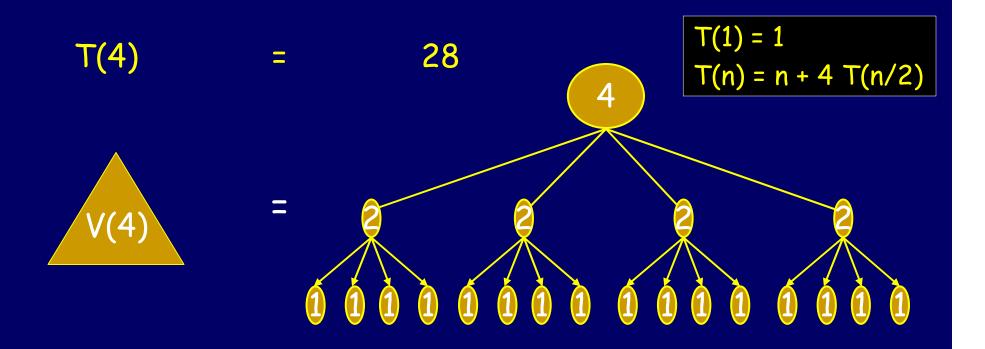
T(1) = 1T(n) = n + 4 T(n/2)

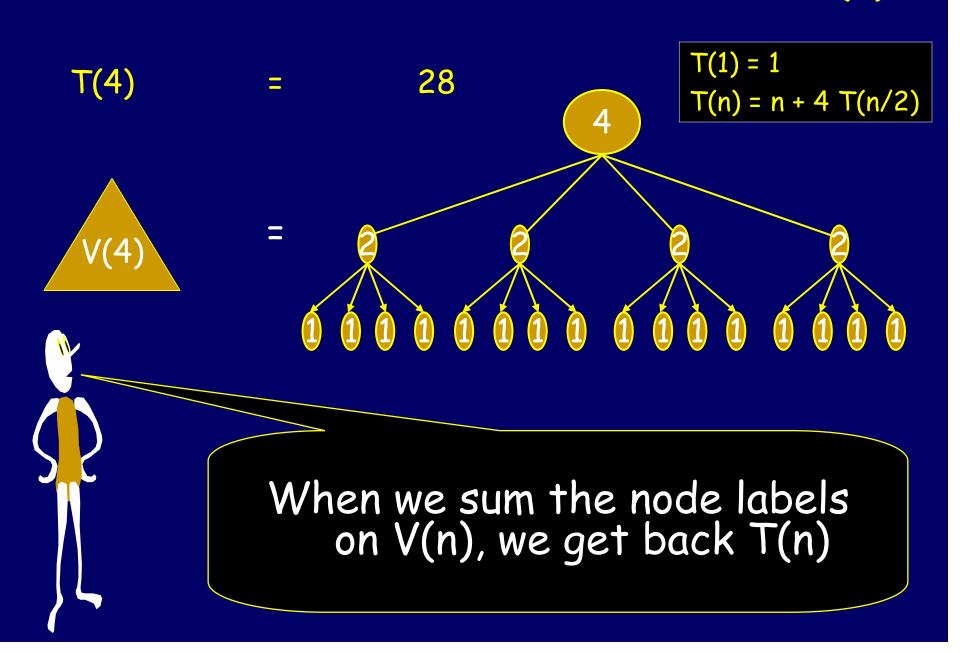




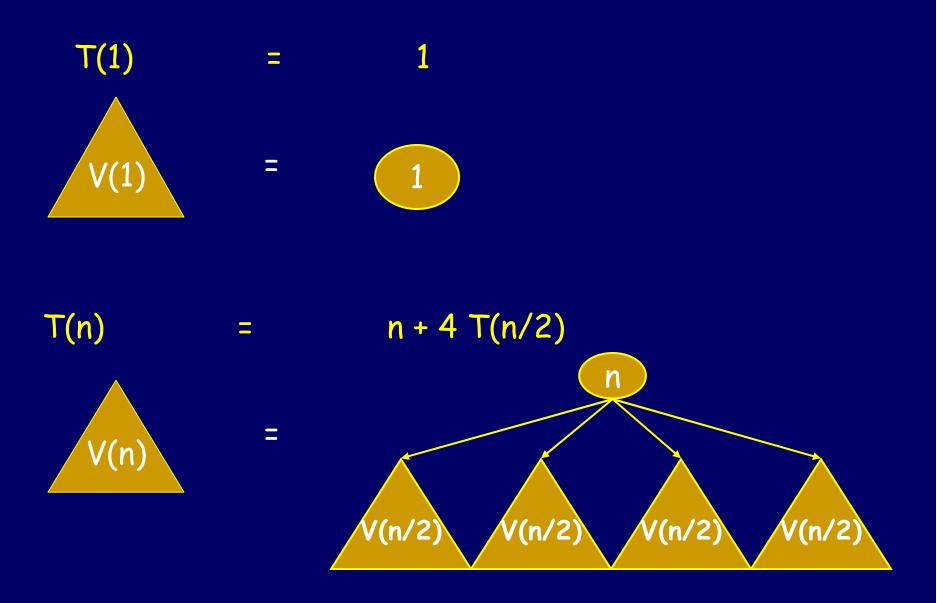


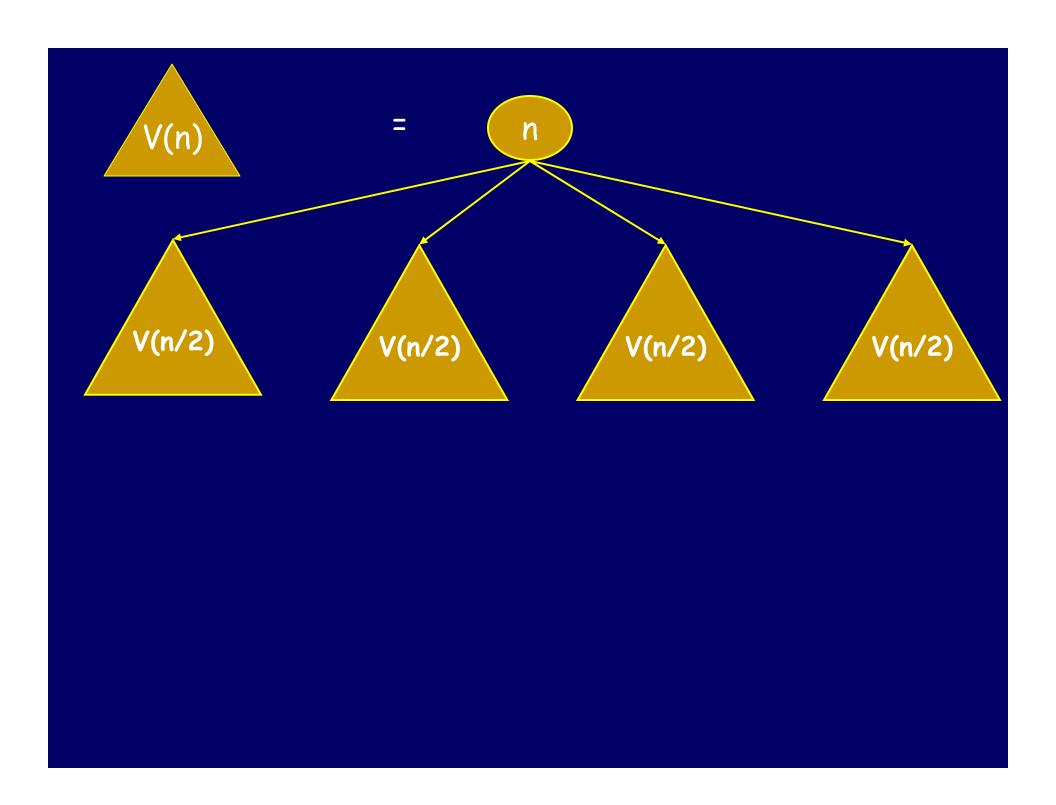


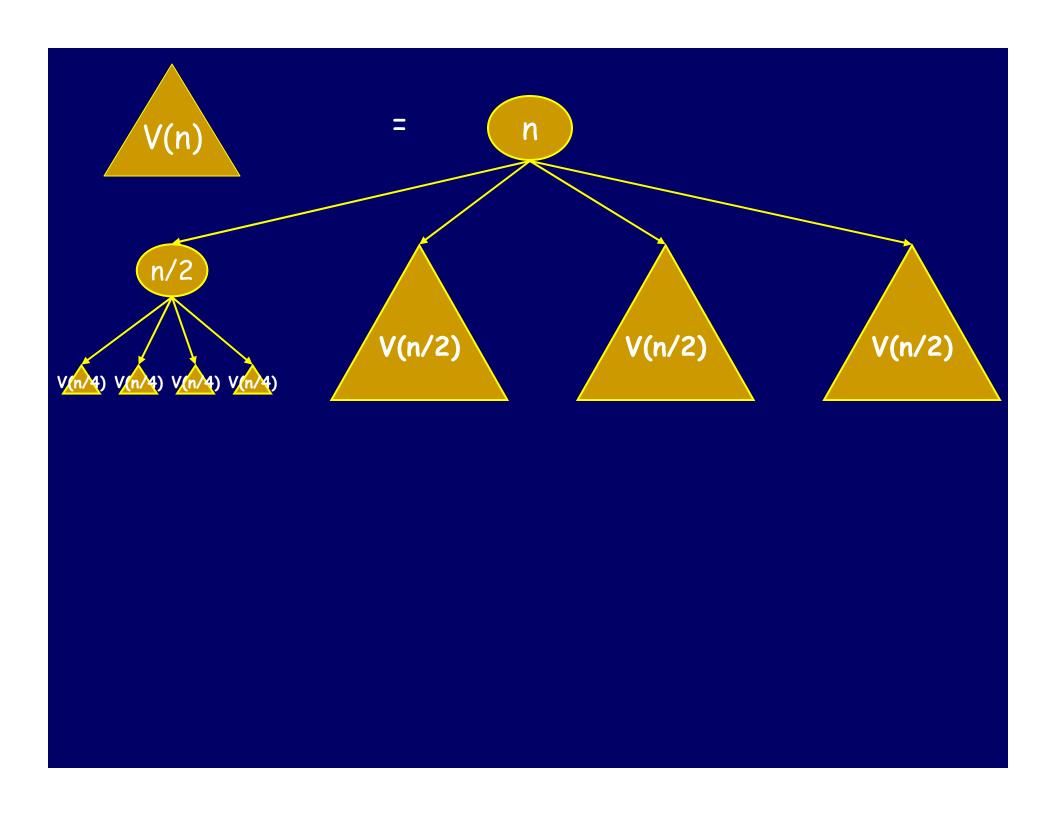


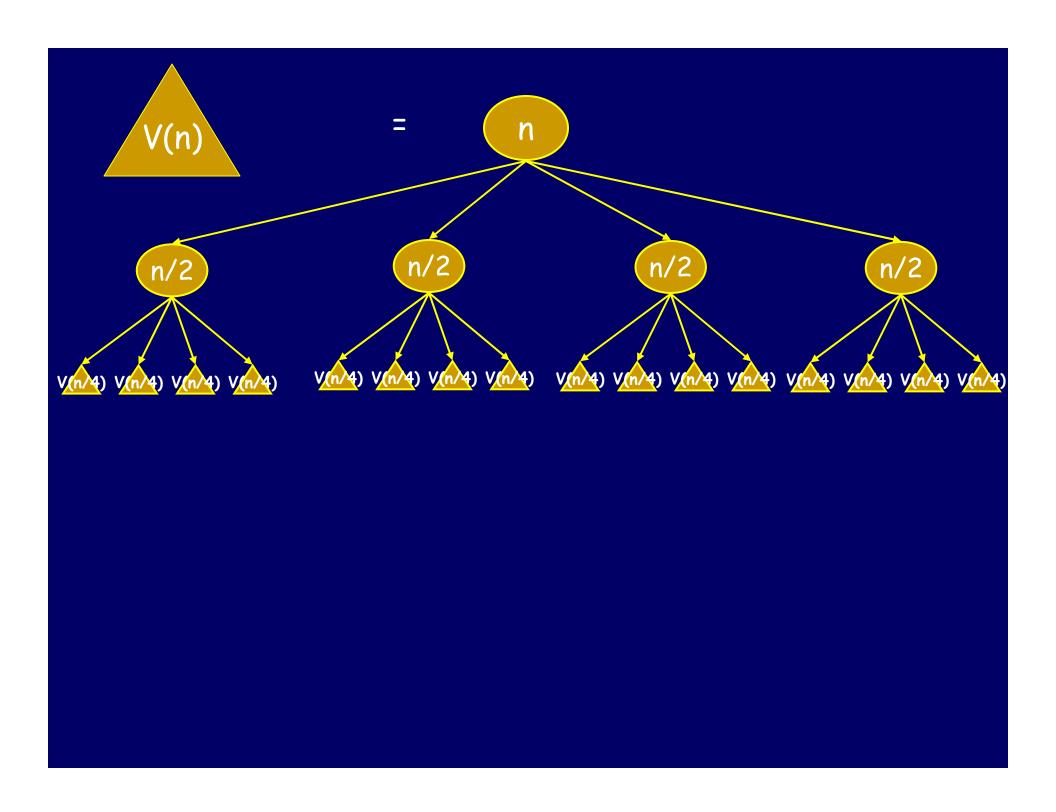


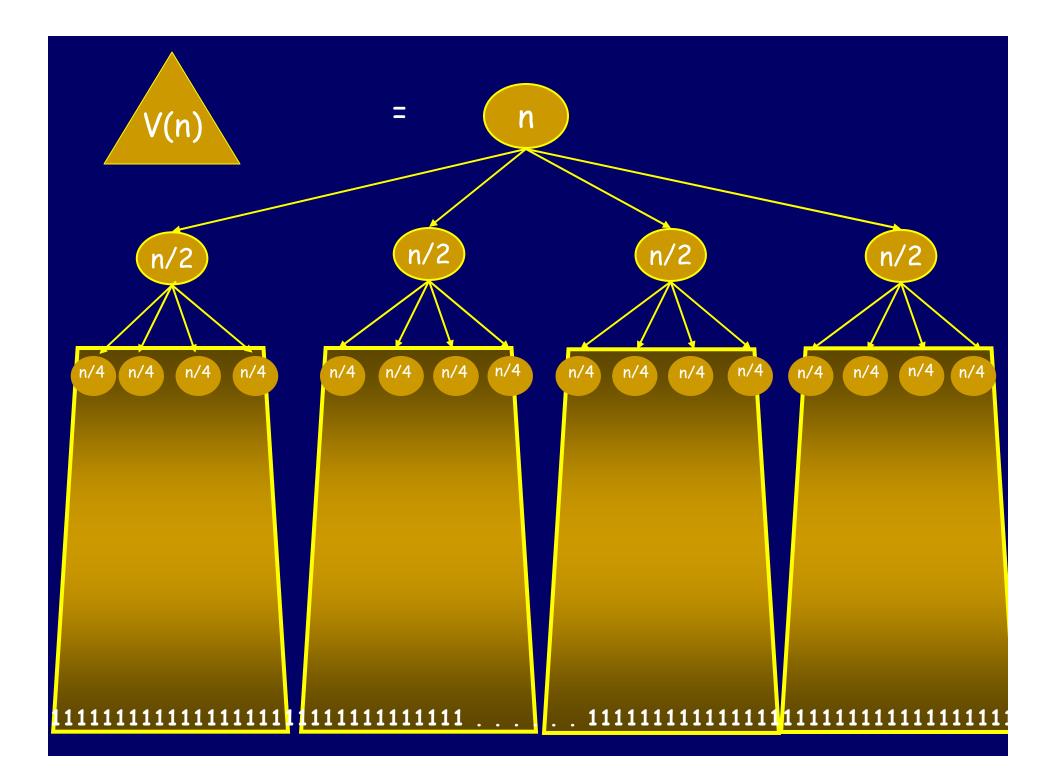
Can prove Invariant: T(n) = (sum of labels in V(n))

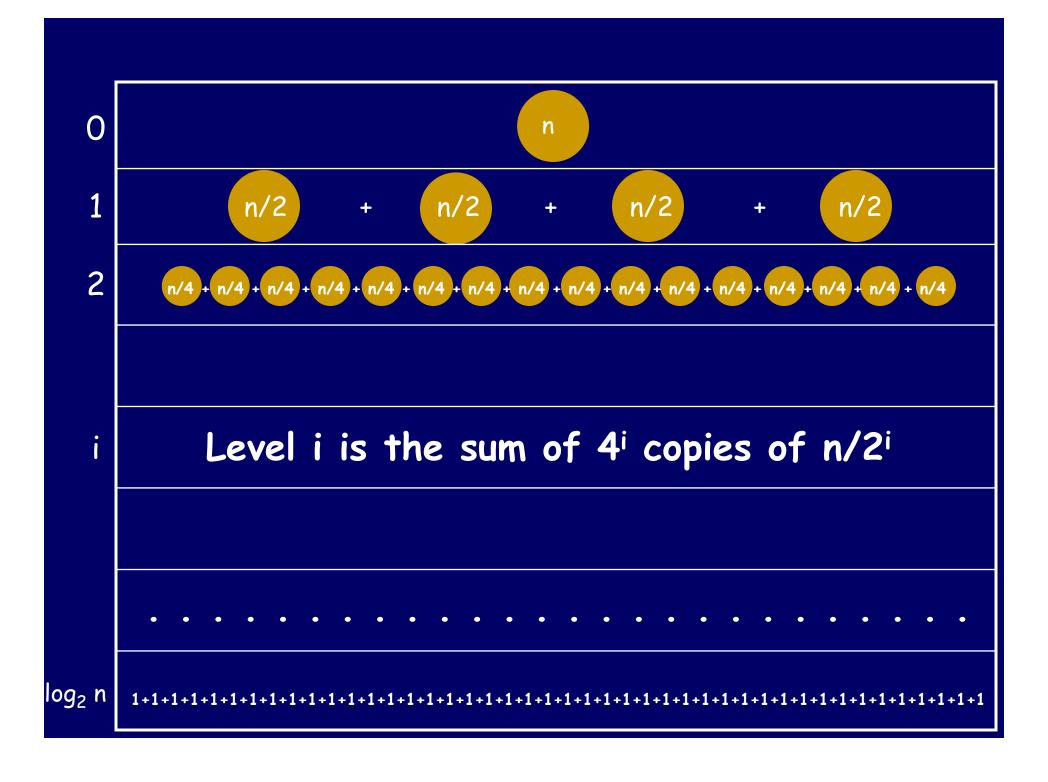


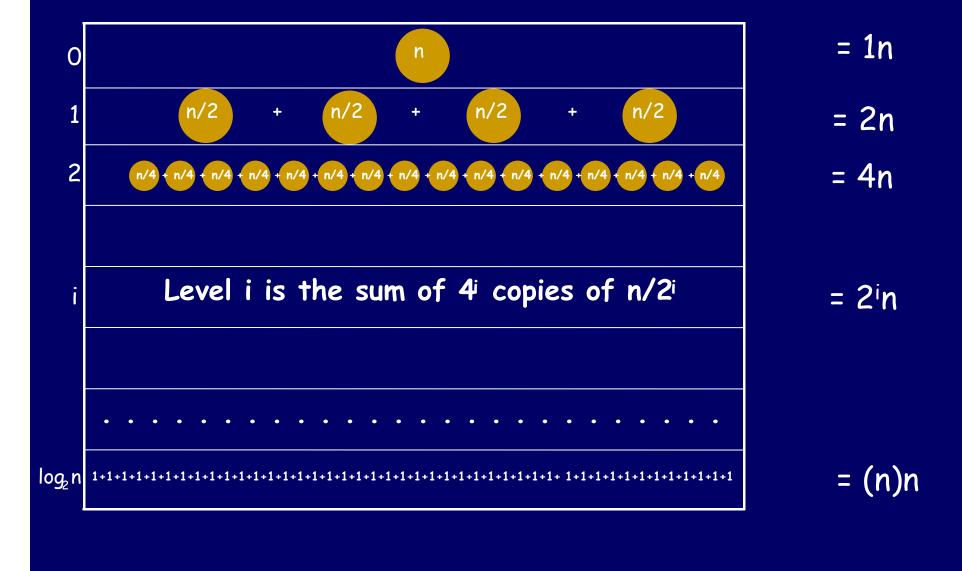




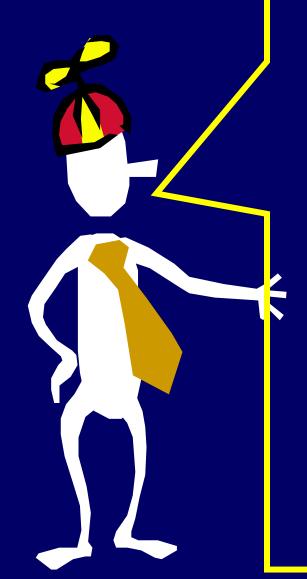








$$n(1+2+4+8+...+n) = n(2n-1) = 2n^2-n$$

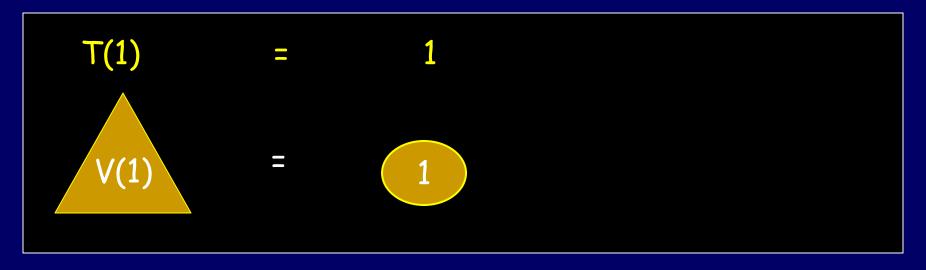


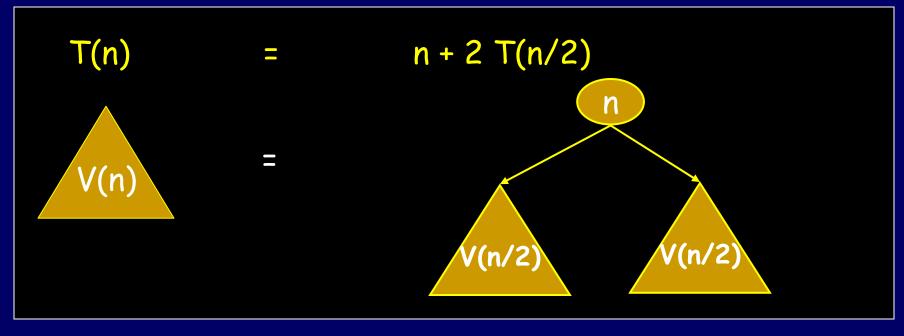
And the technique is very general.

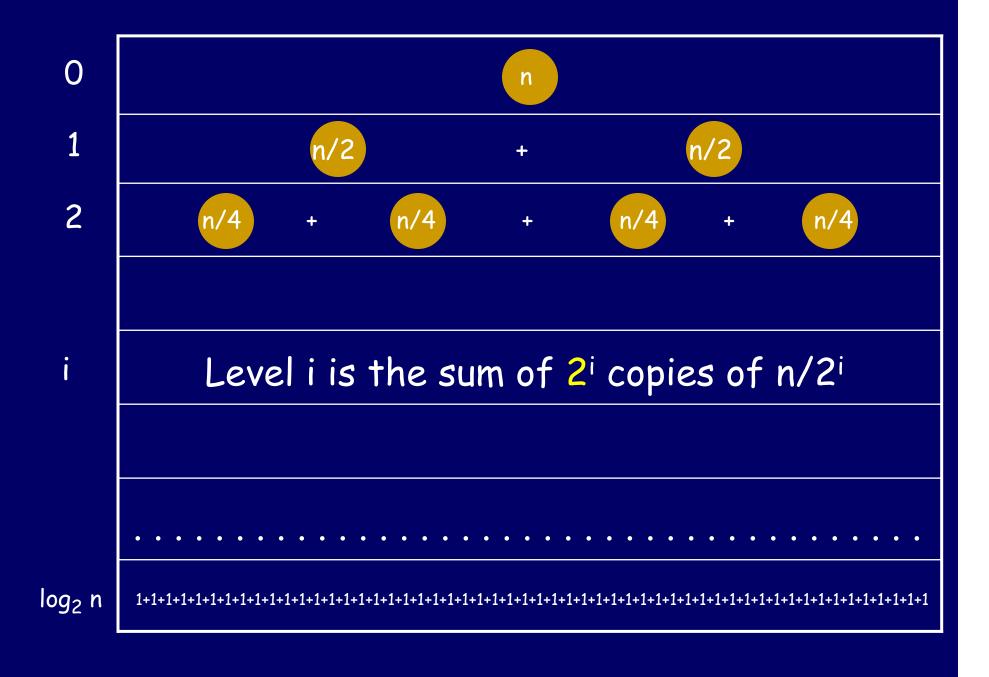
Instead of T(1)=1; T(n)=4T(n/2)+n

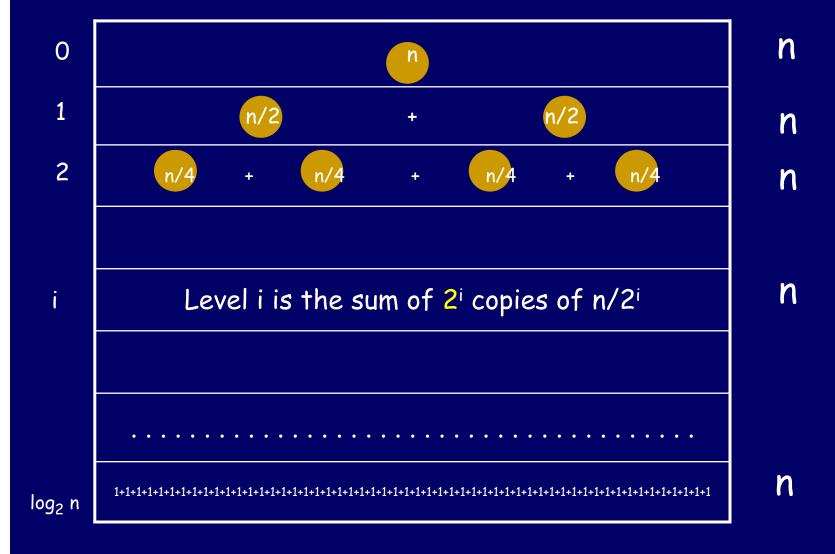
We could illuminate T(1)=1; T(n) = 2T(n/2) + n

New Recurrence T(n) = 2T(n/2) + n





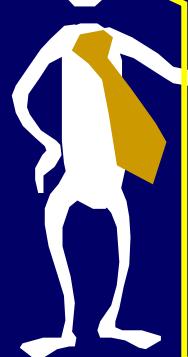




$$n(1+1+1+...+1) = n (log_2 n + 1)$$

$$T(1)=1$$
; $T(n) = 2T(n/2) + n$

where n is a power of 2



Representing a recurrence relation as a labeled tree is one of the basics tools you will have to put recurrence relations in closed form.

The Lindenmayer Game

Alphabet: $\Sigma = \{a,b\}$

Start word: a

Production Rules:

Sub(a) = ab

Sub(b) = a

NEXT($w_1 w_2 ... w_n$) = Sub(w_1) Sub(w_2) ... Sub(w_n)

a
ab
aba
abaababaabaab

How long are the strings as a function of time?

FIBONACCI(n) at time n

Aristid Lindenmayer (1925-1989)

1968 Invents L-systems in Theoretical Botany

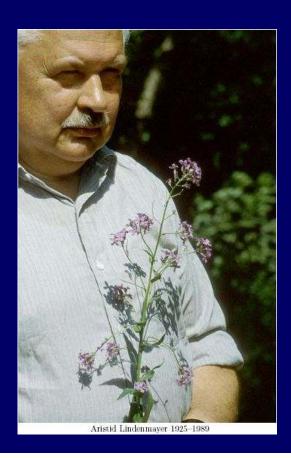
Time 1: a

Time 2: ab

Time 3: aba

Time 4: abaab

Time 5: abaababa



The Koch Game

Alphabet: $\Sigma = \{ F, +, - \}$

Start word: F

Production Rules:

$$Sub(F) = F+F--F+F$$

Sub(+) = +

Sub(-) = -

NEXT $(w_1 \ w_2 \ ... \ w_n) = Sub(w_1) Sub(w_2) ... Sub(w_n)$



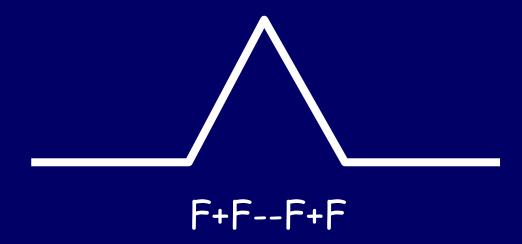
Helge von Koch

Gen 0: F

Gen 1: F+F--F+F

Gen 2: F+F--F+F+F+F--F+F--F+F--F+F

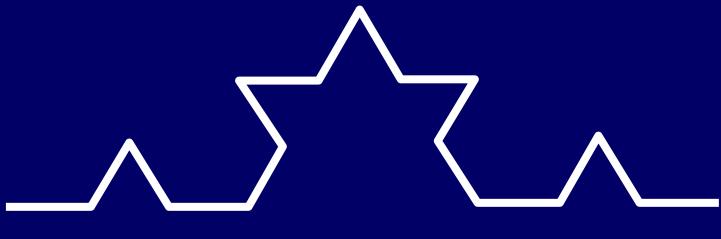
The Koch Game



Visual representation:

- F draw forward one unit
- + turn 60 degree left
- turn 60 degrees right

The Koch Game

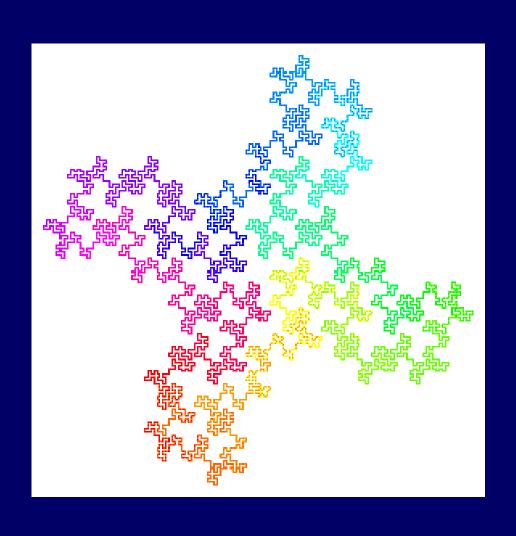


F+F--F+F+F--F+F--F+F+F+F+F--F+F

Visual representation:

- F draw forward one unit
- + turn 60 degree left
- turn 60 degrees right

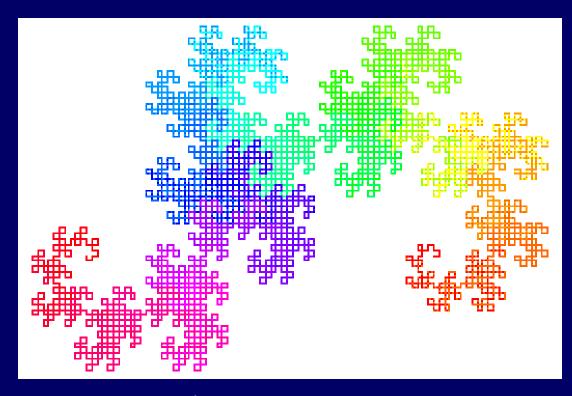
Koch Curve



Dragon Game

Sub(X) = X + YF +

Sub(Y) = -FX-Y



Dragon Curve

Hilbert Game

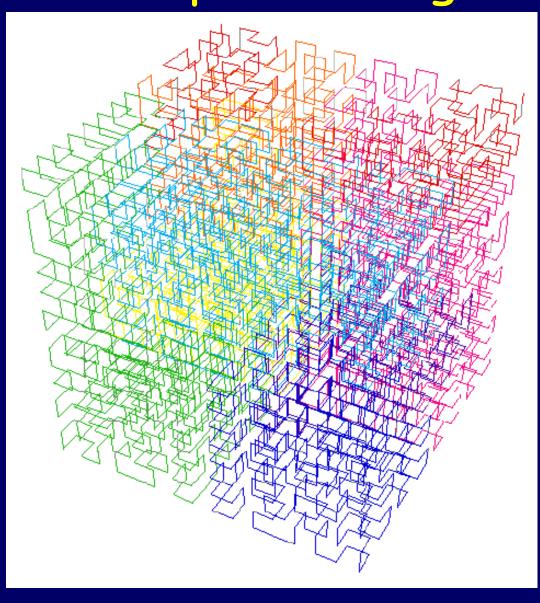
Sub(L)= +RF-LFL-FR+ Sub(R)= -LF+RFR+FL-

Make 90 degree turns instead of 60 degrees.

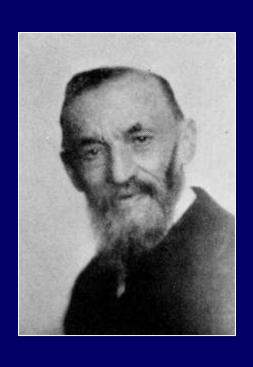
Hilbert

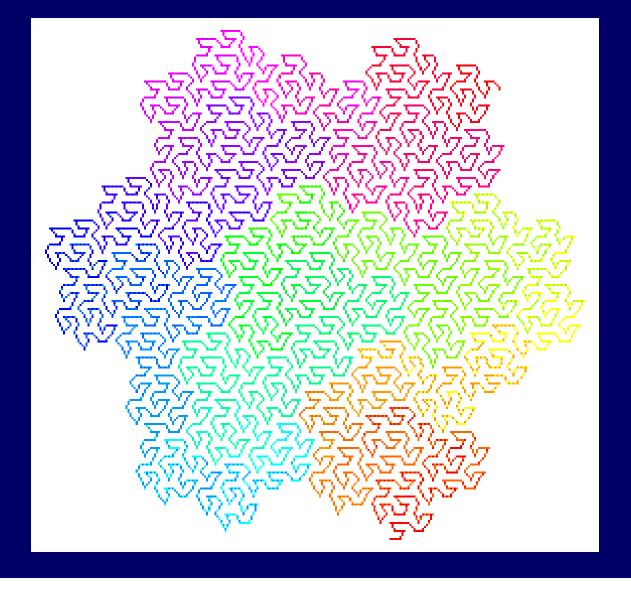
Hilbert Curve

Hilbert's space filling curve

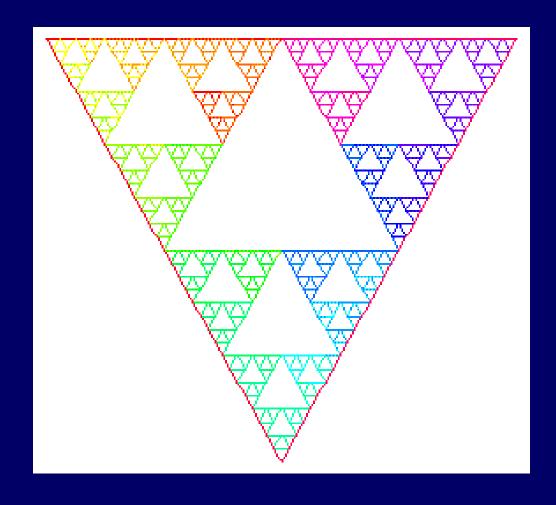


Peano's gossamer curve





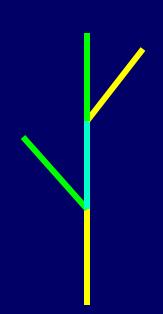
Sierpinski's triangle



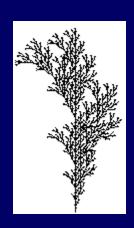
Lindenmayer 1968

Sub(F) = F[-F]F[+F][F]

Interpret the stuff inside brackets as a branch.



Lindenmayer 1968

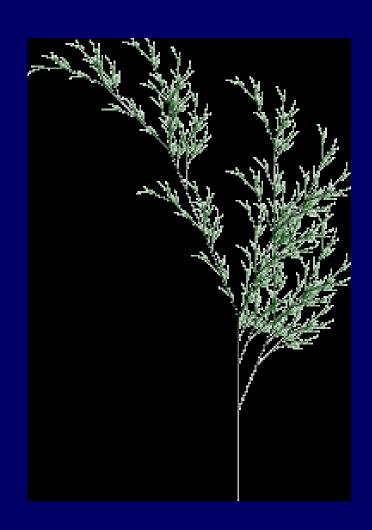


Inductive Leaf

"The Algorithmic Beauty of Plants"

Start at X Sub(X) = F-[[X]+X]+F[+FX]-X Sub(F) = FF

Angle=22.5



Much more stuff at

http://www.cbc.yale.edu/courseware/swinglsystem.html

Recap:

Inductive Proofs

Invariants

Inductive Definitions of Functions

Summing Powers of 2

Solving Recurrence Relations
Guess and Verify
Visualizing recurrences as labeled trees

Definitions

Factorial function
Graphs (Undirected/Directed)
Trees and Labelings