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Great Theoretical Ideas In Computer Science



Inductive Proof:
“Standard” Induction

“Least Counter-example”
“All Previous” Induction

and
Invaraints



Theorem? (k ≥ 0)
1+2+4+8+…+2k = 2k+1 -1

Try it out on small 
examples:
20 = 21 -1
20 + 21 = 22 -1
20 + 21 + 22 = 23 -1



Sk≡ “1+2+4+8+…+2k = 2k+1 -1”
Use induction to prove ∀k≥0, Sk
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Sk≡ “1+2+4+8+…+2k = 2k+1 -1”
Use induction to prove ∀k≥0, Sk

Establish “Base Case”: S0. We have already 
checked it.

Establish “Domino Property”: ∀k≥0, Sk ⇒ Sk+1

“Inductive Hypothesis” Sk:

1+2+4+8+…+2k = 2k+1 -1

Add 2k+1 to both sides:

1+2+4+8+…+2k + 2k+1= 2k+1 +2k+1 -1

1+2+4+8+…+2k + 2k+1= 2k+2 -1



Fundamental lemma of 
the powers of two:

The sum of the 
first n powers of 2, 
is one less than 
the next power of 2.



In Lecture #2, 
we also saw:

Inductive Definitions
of Functions

and
Recurrence Relations



Inductive Definition 
of n! 

[said “n factorial”]

0! = 1

n! = n × (n-1)!



Definition of factorial
0! = 1; n! = n × (n-1)!

function Fact(n) {
F:=1;
For x = 1 to n do

F:=F*x;
Return F

}

Does this bottom-up
program really compute n! ? 

n=0 returns 1
n=1 returns 1
n=2 returns 2



0! = 1; n! = n × (n-1)!

function Fact(n) {
F:=1;
For x = 1 to n do

F:=F*x;

Loop Invariant: F=x!

True for x=0. 
If true after k iterations, then 
true after k+1 iterations.

Return F 
}

// Loop Invariant: F=x! here



Inductive Definition of T(n)

T(1) = 1

T(n) =  4T(n/2) + n

Notice that T(n) is inductively defined only 
for positive powers of 2, and undefined on 
other values.

T(1)=1 T(2)=6 T(4)=28 T(8)=120



Guess a closed form formula for T(n).
Guess G(n)

G(n) = 2n2 - n

Let the domain of G be the powers of two.

G(1)=1 G(2)=6 G(4)=28 G(8)=120



Two equivalent functions?

G(n) = 2n2 - n

Let the domain of G be the powers of two.

T(1) = 1

T(n) = 4 T(n/2) + n

Domain of T is the powers of two.



Inductive Proof of Equivalence

G(n) = 2n2 - n

T(1) = 1
T(n) = 4 T(n/2) + n



Inductive Proof of Equivalence

G(n) = 2n2 - n

T(1) = 1
T(n) = 4 T(n/2) + n



Inductive Proof of Equivalence

Base: G(1) = 1 and T(1) = 1

Induction Hypothesis:
T(x) = G(x) for x < n

Hence: T(n/2) = G(n/2) = 2(n/2)2 – n/2

T(n) = 4 T(n/2) + n [by definition of T(n)]
= 4 G(n/2) + n [by I.H.]

= 4 [2(n/2)2 – n/2] + n [by definition of G(n/2)]
= 2n2 – 2n + n
= 2n2 – n
= G(n) [by definition of G(n)]

G(n) = 2n2 - n

T(1) = 1
T(n) = 4 T(n/2) + n



We inductively proved 
the assertion that 
∀ n ≥ 1, T(n) = G(n). 

Giving a formula for 
T(n) with no sums or 
recurrences is called 

“solving the recurrence 
for T(n)”.



Solving Recurrences: 
Guess and Verify

T(1) = 1
T(n) = 4 T(n/2) + n

Guess: G(n) = 2n2 – n



Solving Recurrences: 
Guess and Verify

T(1) = 1
T(n) = 4 T(n/2) + n

Guess: G(n) = 2n2 – n

Verify: G(1) = 1 
and G(n) = 4 G(n/2) + n

Similarly:T(1) = 1 

and T(n) = 4 T(n/2) + n

So T(n) = G(n)



That was another 
view of the same
“guess-and-verify”
proof of G(n) =T(n). 

We showed that G = T at 
the base case, and that G 

satisfies the same 
recurrence relation!



Technique 2
Guess Form and Calculate Coefficients

Guess: T(n) = an2 + bn + c 
for some a,b,c T(1) = 1

T(n) = 4 T(n/2) + n
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Technique 2
Guess Form and Calculate Coefficients

Guess: T(n) = an2 + bn + c 
for some a,b,c

Calculate: T(1) = 1 ⇒ a + b + c = 1

T(n) = 4 T(n/2) + n 
⇒ an2 + bn + c = 4 [a(n/2)2 + b(n/2) + c] + n

= an2 + 2bn + 4c + n 
⇒ (b+1)n + 3c = 0

Therefore: b=-1     c=0     a=2

T(1) = 1
T(n) = 4 T(n/2) + n



A computer scientist not 
only deals with numbers, 

but also with

finite strings of symbols

Very visual objects called 
graphs

And especially the special 
graphs called trees



b

roota

Graphs



Definition: Graphs

A graph G = (V,E) consists of 

• a finite set V of vertices (also called “nodes”), and

• a finite set E of edges. 

Each edge is a set {a, b} of two different vertices. 

n.b. A graph may not have self loops or 
multiple edges (unless mentioned otherwise)



Visualization: graphs

A graph G = (V,E) consists of 

• a finite set V of vertices (also called “nodes”), and

• a finite set E of edges. 

Each edge is a set {a, b} of two different vertices. 

n.b. A graph may not have self loops or 
multiple edges (unless mentioned otherwise)



Definition: Directed Graphs

A graph G = (V,E) consists of 
• a finite set V of vertices (nodes) and 
• a finite set E of edges. 
Each edge is an ordered pair <a,b> of two different 

vertices. 

n.b. A directed graph may not have self loops or 
multiple edges (unless mentioned otherwise)



Visualization: Directed graphs

A graph G = (V,E) consists of 

• a finite set V of vertices (nodes) and 

• a finite set E of edges. 

Each edge is an ordered pair <a,b> of two different vertices. 

n.b. A directed graph may not have self loops or 
multiple edges (unless mentioned otherwise).



Definition: Rooted Tree

A rooted tree is a directed graph with one special node 
called the root and the property that each node 
has a unique path from the root to itself. 



Are these trees?

A rooted tree is a directed graph with one special node 
called the root and the property that each node 
has a unique path from the root to itself. 



Definition: Rooted Tree

b

roota

A rooted tree is a directed graph with one special node 
called the root and the property that each node 
has a unique path from the root to itself. 



Terminology: Tree

Child: If <u,v>∈E, we say v is a child of u
Parent: If <u,v>∈E, we say u is the parent of v

Leaf: If x has no children, we say x is leaf.
Siblings: If u and w have the same parent, 

they are siblings.

b

roota



Terminology: Tree
Descendants of u:

The set of nodes reachable from u (including u). 

Sub-tree rooted at u:
Descendants of u and all the edges between them.
(u is designated as the root of this tree.)

b

roota



Classical Visualizations of Trees

Here’s the inductive rule:

If G is a single node

Viz(G) =

If G consists of root r with sub-trees T1, T2, …, Tk

Viz(G) =

Viz(T1) Viz(T2) Viz(Tk)
……



This visualization will be 
crucial to understanding 

properties of trees.



I own 3 beanies and 2 ties. 
How many beanie/tie combos 

might I wear to the ball 
tonight? 





A choice tree is a tree with 
an object called a “choice” associated 
with each edge and a label called an 

“outcome” on each leaf.

Choice Tree



Definition: Labeled Trees

A tree “edge labeled by S” is 
a tree T = (V,E) with 
an associated function Edge-Label: E → S

A tree “node labeled by S” is 
a tree T = (V,E) with 
an associated function Node-Label: V → S



can be very illuminating.

Let’s do something similar to 
illuminate the nature of 
T(1)=1; T(n) = 4T(n/2) + n



T(1)=1; T(n)= 4T(n/2) + n

For each n (power of 2),
we will define a tree V(n)

that is node-labeled by numbers.

This tree V(n) will give us an 
incisive picture of the 

recurrence relation T(n).



Inductive Definition Of Labeled Tree V(n)

T(n)              =              n + 4 T(n/2)

n

V(n/2) V(n/2) V(n/2) V(n/2)

V(n)
=

V(1)

T(1)              =              1

1=



Inductive Definition Of Labeled Tree V(n)

T(1) = 1

T(n) = n + 4 T(n/2)

V(2)
=

V(1)

T(1)              =              1

1=



T(2)              =              6

V(2) =

2

1 1 1 1

V(4)
=

Inductive Definition Of Labeled Tree V(n)

T(1) = 1

T(n) = n + 4 T(n/2)



T(2)              =              6

V(2) =

2

1 1 1 1

V(4)
=

Inductive Definition Of Labeled Tree V(n)

T(1) = 1

T(n) = n + 4 T(n/2)

4

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1



V(4)
=

Inductive Definition Of Labeled Tree V(n)

T(1) = 1

T(n) = n + 4 T(n/2)
4

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1

T(4)              =              28



V(4)
=

Inductive Definition Of Labeled Tree V(n)

T(1) = 1

T(n) = n + 4 T(n/2)
4

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1

T(4)              =              28

When we sum the node labels 
on V(n), we get back T(n)



Can prove Invariant: T(n) = (sum of labels in V(n))

T(n)              =              n + 4 T(n/2)

n

V(n/2) V(n/2) V(n/2) V(n/2)

V(n)
=

V(1)

T(1)              =              1

1=



n

V(n/2) V(n/2) V(n/2) V(n/2)

V(n) =



n

V(n/2) V(n/2) V(n/2)

V(n) =

n/2

V(n/4) V(n/4) V(n/4) V(n/4)



nV(n) =

n/2

V(n/4) V(n/4) V(n/4) V(n/4)

n/2

V(n/4) V(n/4) V(n/4) V(n/4)

n/2

V(n/4) V(n/4) V(n/4) V(n/4)

n/2

V(n/4) V(n/4) V(n/4) V(n/4)



nV(n) =

n/2 n/2 n/2n/2

11111111111111111111111111111111 . . . . . . 111111111111111111111111111111111

n/4 n/4 n/4n/4n/4n/4n/4n/4n/4n/4n/4n/4n/4n/4n/4 n/4



n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i
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Level i is the sum of 4i copies of n/2i

n/2         +        n/2        +         n/2          +       n/2

n



= 1n

= 2n

= 4n

= 2in

= (n)n

n(1+2+4+8+ . . . +n) =          n(2n-1) =                   2n2-n

Level i is the sum of 4i copies of n/2i

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+ 1+1+1+1+1+1+1+1+1+1+1+1

. . . . . . . . . . . . . . . . . . . . . . . . . . 

n/2         + n/2        +         n/2          +     n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2



And the technique 
is very general.

Instead of 
T(1)=1; T(n)= 4T(n/2) + n

We could illuminate
T(1)=1; T(n) = 2T(n/2) + n



New Recurrence T(n) = 2T(n/2) + n

T(n)              =              n + 2 T(n/2)

n

V(n/2) V(n/2)

V(n)
=

V(1)

T(1)              =              1

1=



0

1

2

i

log2 n

n/2                    +                    n/2

n/4         +           n/4            +            n/4         +           n/4 

Level i is the sum of 2i copies of n/2i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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n



Level i is the sum of 2i copies of n/2i
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n/4         +           n/4            +            n/4         +          n/4   

n/2                    +                    n/2

n0

1

2

i

log2 n

n

n

n

n

n

n(1+1+1+…+1) =          n (log2 n + 1)



T(1)=1; T(n) = 2T(n/2) + n

has closed form
T(n) = n (log2(n)  + 1)

where n is a power of 2





Representing a recurrence 
relation as a labeled tree is one 

of the basics tools you will 
have to put recurrence 
relations in closed form.



The Lindenmayer  Game

Alphabet: Σ = {a,b}

Start word: a

Production Rules:

Sub(a) = ab

Sub(b) = a

NEXT(w1 w2 … wn) = 
Sub(w1) Sub(w2) … Sub(wn)

a
ab
aba
abaab
abaababa
abaababaabaab

How long are the 
strings as a 

function of time?

FIBONACCI(n)  
at time n



Aristid Lindenmayer (1925-1989)

1968 Invents L-systems in Theoretical Botany

Time 1: a

Time 2: ab

Time 3: aba

Time 4: abaab

Time 5: abaababa



The Koch Game

Alphabet: Σ = { F, +, - }

Start word: F

Production Rules:

Sub(F) = F+F--F+F  

Sub(+) = + 

Sub(-) = -

NEXT(w1 w2 … wn) = Sub(w1) Sub(w2) … Sub(wn)

Gen 0: F

Gen 1:  F+F--F+F

Gen 2: F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F

Helge von Koch



F+F--F+F

Visual representation:

F draw forward one unit
+ turn 60 degree left   
- turn 60 degrees right

The Koch Game



Visual representation:

F draw forward one unit
+ turn 60 degree left   
- turn 60 degrees right

The Koch Game

F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F



Koch Curve



Sub(X) =X+YF+           Sub(Y) = -FX-Y

Dragon Curve

Dragon Game



Hilbert Game

Sub(L)=  +RF-LFL-FR+
Sub(R)= -LF+RFR+FL-

Hilbert Curve

Make 90 degree turns 
instead of 60 degrees.



Hilbert’s space filling curve



Peano’s gossamer curve



Sierpinski’s triangle



Lindenmayer 1968

Sub(F) =  F[-F]F[+F][F]

Interpret the stuff inside 
brackets as a branch.



Lindenmayer 1968



Inductive Leaf

“The Algorithmic Beauty of Plants”



Start at X
Sub(X) = F-[[X]+X]+F[+FX]-X
Sub(F) = FF 

Angle=22.5



©The Algorithmic Beauty of Plants, Przemyslaw Prusinkiewicz and Aristid Lindenmayer, Springer-Verlag 1990 



Much more stuff at

http://www.cbc.yale.edu/courseware/swinglsystem.html



Study Bee

Recap:
Inductive Proofs
Invariants
Inductive Definitions of Functions

Summing Powers of 2

Solving Recurrence Relations
Guess and Verify
Visualizing recurrences as labeled trees

Definitions
Factorial function
Graphs (Undirected/Directed)
Trees and Labelings


