Great Theoretical Ideas In Computer Science
Anupam Gupta CS 15-251 Fall 2006
Lecture 3 Sept 5, 2006 Carnegie Mellon University

Induction IT:
Inductive Pictures

~

Q/ Inductive Proof:

"Standard” Induction
"Least Counter-example”
“"All Previous"” Induction

and
Invaraints

\ v

Theorem’ (k > 0)
1+2+4+8+, +2k = 2kl _1

Try it out on small

examples:

20 = 2! -1
20 + 21 = 22 -1
20+ 21+22 =23-1

_

S = “1+2+4+8+ +2k = 2k+1 _1"
Use induction to prove Vvk>0, S,

S = “1+2+4+8+ +2k = 2k+1 _1"
Use induction to prove Vvk>0, S,

J(J

(2) (Sk > Spy) YK 2D

S = “1+2+4+8+ +2k = 2k+1 _1"
Use induction to prove Vvk>0, S,

Establish "Base Case": S, We have already
checked it.

Establish "Domino Property”: Vk>0, S, = S,

"Inductive Hypothesis" S;:
142+4+8+, +2k = 2k

Add 2k to both sides:

142+4+8+ +2K + 2ktl= 2kl 4 2k+1 1

~

Fundamental lemma of
the powers of two:

The sum of the
first n powers of 2,
is one less than

the next power of 2.

_ /

~

In Lecture #2,
we also saw:

Inductive Definitions
of Functions
and
Recurrence Relations

L v

.

.

Inductive Definition
of nl
[said "n factorial”]

Ol=1

nl = nx (n-1)

Definition of factorial
Ol=1; nl=nx(n-1l

function Fact(n) {
F:=1;
For x=1tondo

N) S
Re’ru[:n [F; X h=0 returns 1

) n=1 returns 1
n=2 returns 2

Does this bottom-up

wogr‘am really compute nl y

Ol =1; nl=nx(n-1) \

function Fact(n) {
F:=1;
Forx=1tondo?
F:=F*x:
// Loop Invariant: F=x! here}
Return F

e /!

Loop Invariant: F=xl

True for x=0.

If true after k iterations, then
true after k+1 iterations.

Inductive Definition of T(n)

T =1
T(n) = 4T(n/2) +n

Notice that T(n) is inductively defined only
for positive powers of 2, and undefined on
other values.

T(1)=1 T(2)=6 T(4)=28 T(8)=120

Guess a closed form formula for T(n).
Guess G(n)

G(n) = 2n° - n
Let the domain of G be the powers of two.

G(1)=1 G(2)=6 G(4)=28 ((8)=120

Two equivalent functions?

G(n) = 2n° - n
Let the domain of G be the powers of two.

HOES!
T(nN) =4 T(n/2) +n
Domain of T is the powers of two.

Inductive Proof of Equivalence

G(n) = 2n? - n

HOER!
T(n) =4 T(n/2) +n

Inductive Proof of Equivalence

G(n) = 2n? - n

HOER!
T(n) =4 T(n/2) +n

Inductive Proof of Equivalence

G(n) = 2n? -

Base: 6(1) = 1 and T(1) = 1

Induction Hypothesis: T1)=1
T(x) = 6(x) for x<n , z bewg T(n) = 4 T(n/2) + n

Hence: T(n/2) = 6(n/2) = 2(n/)2)2 ;52

T(n) =4T(n/2)+n [by definition of T(n)]
=4 6(n/2) +n [by I.H.]

= 4 [2(n/2)2- n/2] + n [by definition of G(n/2)]
=2n2-2n+n
=2n°-n

= 6(n) [by definition of G(n)]

We inductively prove

¢

\

))

the assertion that
vV n>1, T(n) = 6(n).

Giving a formula for
T(n) with no sums or
recurrences is called

"solving the recurrence

for T(n)".
_/

Solving Recurrences:
Guess and Verify

Guess: G(n) = 2n2-n
O &) =4/ —1 = |

@ é[m) = anz- w

—
—

Gln) = 4 (%) + w

T =1
T(nN) =4 T(n/2) +n

4[208) = "%] +2%"%

Solving Recurrences:
Guess and Verify

Guess: G(n) = 2n2-n

Verify: 6(1)=1
and 6(n) = 4 6(n/2) + n

Similarly: T(1) = 1
and T(n) = 4 T(n/2) + n

So T(n) = 6(n)

T =1
T(nN) =4 T(n/2) +n

\

That was another
view of the same
"guess-and-verify"
proof of G(n) =T(n).

We showed that G = T at
the base case, and that G
satisfies the same

\ recurrence relation! J

Technique 2
Guess Form and Calculate Coefficients

Guess: T(n)=an?+bn+c

for some a,b,c T1)=1

T(nN) =4 T(n/2) + n

Ty =/

Dol b4 c =

5 [arer 1]

Technique 2
Guess Form and Calculate Coefficients

Guess: T(n)=an?+bn+c

T(1) = 1

b
for some a,b,c \n) T2y

/@A{«l/bm—c = 4 &("‘/2)24' b(%)4—C]+m

- })ﬂz/—\— 2bw +4c 4w

:> EWA’V\/*I‘.BC';O W
= Q)«\">W)r3C:O VWrwﬂr?,

Technique 2
Guess Form and Calculate Coefficients

Guess: T(n)=an?+bn+c

for some a,b,c T1)=1

T(nN) =4 T(n/2) + n

A kbac

Technique 2
Guess Form and Calculate Coefficients

LOER
Guess: T(n) = an+bn + ¢ T(n) = 4 T(n/2) + n
for some a,b,c

Calculate: T(1)=1=a+b+c=1

T(nN) =4 T(n/2) +n
= an®+bn+c=4[a(n/2)?+ b(n/2)+c]+n
=an?+2bn+4c+n
= (b+1)n+3c=0
Therefore: b=-1 ¢=0 a=2

A computer scientist noﬁ
only deals with numbers,

but also with

finite strings of symbols

Very visual ob}l‘ec’rs called
graphs

And esDecuall the special

\ graphs cal ed trees /

Definition: Graphs

A graph G = (V,E) consists of
a finite set V of vertices (also called "nodes"), and
a finite set E of edges.

Each edge is a set {a, b} of two different vertices.

n.b. A graph may not have self loops or
multiple edges (unless mentioned otherwise)

Visualization: graphs

A graph G = (V,E) consists of
a finite set V of vertices (also called "nodes"), and
a finite set E of edges.

Each edge is a set {q, b} of two different vertices.

n.b. A graph may not have self loops or
multiple edges (unless mentioned otherwise)

2

L 1t A (=)
2

u%—M-

Definition: Directed Graphs

A graph G = (V,E) consists of
a finite set V of vertices (nodes) and
a finite set E of edges.

Each edge is an ordered pair <a,b> of two different
vertices.

n.b. A directed graph may not have self loops or
multiple edges (unless mentioned otherwise)

Visualization: Directed graphs

A graph G = (V,E) consists of
a finite set V of vertices (hodes) and
a finite set E of edges.
Each edge is an ordered pair <a,b> of two different vertices.

n.b. A directed graph may not have self loops or
multiple edges (unless mentioned otherwise).

Definition: Rooted Tree

A rooted tree is a directed graph with one special node
called the root and the property that each node
has a unique path from the root to itself.

Are these trees?

A rooted tree is a directed graph with one special node
called the root and the property that each node
has a unique path from the root to itself.

VOO

Wb\/ f

Q

AN

Definition: Rooted Tree

A rooted tree is a directed graph with one special node
called the root and the property that each node
has a unique path from the root to itself.

— root

Terminology: Tree

Child: If <u,v>€E, we say v is a child of u
Parent: If <u,v>€E, we say u is the parent of v

Leaf: If x has no children, we say x is leaf.
Siblings: If u and w have the same parent,
they are siblings.

Terminology: Tree

Descendants of u:
The set of nodes reachable from u (including u).

Sub-tree rooted at u:
Descendants of u and all the edges between them.
(u is designated as the root of this tree.)

a — root

Classical Visualizations of Trees

Here's the inductive rule:

If G is asingle node

Viz(6) = ‘

If G consists of root r with sub-trees T, T,, .., T},
Viz(G) =

\

This visualization will be

crucial o understanding
properties of trees.

_ /

I own 3 beanies and 2 ties.
How many beanie/tie combos
might I wear to the ball
tonight?

Choice Tree

b

lO/ |
@n A A

A choice tree is a tree with
an object called a "choice” associated
with each edge and a label called an
“outcome” on each leaf.

Definition: Labeled Trees

A tree "edge labeled by S" is
a tree T = (V,E) with
an associated function Edge-Label: E — S

A tree "node labeled by S" is
a tree T = (V,E) with
an associated function Node-Label: V — S

Let's do something similar to

illuminate the nature of
T(1)=1; T(n) = 4T(n/2) + n

T(1)=1; T(n)= 4T(n/2) + n

For each n (power of 2),
we will define a tree V(n)

that is node-labeled by numbers.

This tree V(n) will give us an
incisive picture of the
recurrence relation T(n).

Inductive Definition Of Labeled Tree V(n)

T(1) - 1

oo

T(n) n+4 T(n/2)

o

Inductive Definition Of Labeled Tree V(n)

() - 1 ()= 1

| T(N)=n+4T(n/2)

& Fo

Inductive Definition Of Labeled Tree V(n)

T(2) - T(1) =1

| T(n)=n+4T(n/2)

o

Inductive Definition Of Labeled Tree V(n)

T(2) - 6 T(1) = 1

| % T(N)=n+4T(n/2)

o

Inductive Definition Of Labeled Tree V(n)

T(4)

7'\

28

HOER!
T(N)=n+4T(n/2)

Inductive Definition Of Labeled Tree V(n)

HOER!
T(N)=n+4T(n/2)

T(4) = 28

7'\

¢

X N

When we sum the node labels
on V(n), we get back T(n)

S~ I

Can prove Invariant: T(n) = (sum of labels in V(n))

T(1) - 1

T(n) = n+4 T(n/2)

AN ANNEANNGTAN

1111111111111111193111111111111 . . . |J. . 11111111111111811111111111111111

00000000000 0000

Level i is the sum of 4' copies of n/2!

1+1

. " ‘ ’ . ’ ‘

0000000000000000

Level i is the sum of 4 copies of n/2

141+41+1+1+41+4141+1+14+14+1+1+1+141+1+1+1+141+1+1+1+1+21+1+1+1+1+1+1+ 1414141 +1+14+141+1+1+1+1

n(1+2+4+8+ . . . +n) = n(2n-1) =

And the technique
IS very general.

Instead of
T(1)=1; T(n)= 4T(n/2) + n

We could illuminate
T(1)=1; T(n) = 2T(n/2) + n

New Recurrence T(n) = 2T(n/2) + n

T(1) - 1

oo

T(n) n+2 T(n/2)

o

Level i is the sum of 2' copies of n/2'

j o T R T T T R O S O R R O R S O R T B R B B R T B |

Level i is the sum of 2' copies of n/2:

NS B B B 8 B 0 S 0 O B I B B 5 B B B8 B

n(1+1+1+. .+1) = n (log, n +1)

T(1)=1; T(n) = 2T(n/2) + n

has closed form
T(n) = n (log,(n) +1)

where n is a power of 2

Representing a recurrence
relation as a labeled tree is one

of the basics tools you will
have to put recurrence
relations in closed form.

The Lindenmayer Game

Alphabet: X = {a,b} a
ab

Start word: a aba
0 abaab

Production Rules: abaababa

Sub(a) = ab abaababaabaab

Sub(b) = a How long are the

strings as a
NEXT(w; w, ... wy) = function of time?

Sub(wy) Sub(wz) .. SUbW) 180N AcCT(n)
at time n

Aristid Lindenmayer (1925-1989)

1968 Invents L-systems in Theoretical Botany

Time 1. a

Time 2: ab

Time 3: aba

Time 4: abaab
Time 5: abaababa

The Koch Game

Alphabet: X ={F, +, -}
Start word: F
Production Rules: \

Sub(F) = F+F--F+F

Sub(+) = + Helge von Koch
Sub(-) = -
NEXT(w; w, ... w,) = Sub(w;) Sub(w,) ... Sub(w,)

GenO: F
Gen 1. F+F--F+F
Gen 2: F+F--F+F+ —-F+F--F+F+

The Koch Game

VAN

F+F--F+F

Visual representation:

F draw forward one unit
+ turn 60 degree left
- turn 60 degrees right

The Koch Game

F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F

Visual representation:

F draw forward one unit
+ turn 60 degree left
- turn 60 degrees right

Koch Curve

Dragon Game

Sub(X) =X+YF+ Sub(Y) = -FX-Y

Dragon Curve

Hilbert Game

Sub(L)= +RF-LFL-FR+
Sub(R)= -LF+RFR+FL-

Hilbert Curve

Make 90 degree turns
instead of 60 degrees.

Q
>
-
-
O
&)
=
&
Q)
O
)
Q.
\"2.
AL
g
-
Q
—=
X

et iy, 0N O e S

R
iy s o
R e S J...rq R

[b L R i

_Mmiiﬂ.mwuﬁ ;

i b X
LB g s Wi s T N
Emangis SN SN = S S

T el Jhot]

s N Y o
“mﬂmﬁ.ﬂ: mhmﬁ__._h._._r Fa “llli..n =i

¥, =] or. " ”I.IJ.
mm..-.i?ﬁ-h

g

Iy % I ' £ ' f
. Lyl L it I v
= % " et I
5 e g T M
= : .__". f "... A L-.ﬂ_rt " .
) £, i o = 11 B
v _ -

=

B S e U
T s

i

7 pdoy
808
WA

it g A

Peano’s gossamer curve

iangle

s tr

ierpinski

S

Lindenmayer 1968

Sub(F) = F[-FIF[+F][F]

Interpret the stuff inside
brackets as a branch.

0@
O
@)
1
<
Q)
S
O
=
C
\V)
-
S
-

Inductive Leaf

“The Algorithmic Beauty of Plants”

Start at X
Sub(X) = F-[[X]+X]+F[+FX]-X
Sub(F) = FF

Angle=22.5

©@The Algorithmic Beauty of Plants, Przemyslaw Prusinkiewicz and Aristid Lindenmayer, Springer-Verlag 1990

Much more stuff at

http://www.cbc.yale.edu/courseware/swinglsystem.html

Recap:

§ ')
AN |
CRE) ¥ Induc.’rlve Proofs
——) / Invariants
) U™ Tl Inductive Definitions of Functions
‘ /

Summing Powers of 2

Solving Recurrence Relations

Guess and Verify
Visualizing recurrences as labeled trees

Definitions
Factorial function

STUdy Bee Graphs (Undirected/Directed)
Trees and Labelings

