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The Fibonacci Numbers
And An Unexpected Calculation

Inductive Definition or
Recurrence Relation for the
Fibonacci Numbers

Stage O, Initial Condition, or Base Case:
Fib(0)=0; Fib (1) =1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

Fib(n) 0 1 1 2 3 5 8 13

Counting Petals

5 petals: buttercup, wild rose, larkspur,
columbine (aquilegia)

8 petals: delphiniums

13 petals: ragwort, corn marigold, cineraria,
some daisies

21 petals: aster, black-eyed susan, chicory

34 petals: plantain, pyrethrum

55, 89 petals: michaelmas daisies, the
asteraceae family. Vo
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Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations.

Sneezwort (Achilleaptarmica)
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Each time the plant starts a new shoot
it takes two months before it is strong
enough to support branching.

Pineapple whorls

Church and Turing were both

interested in the number of
whorls in each ring of the
spiral.

The ratio of consecutive rin ﬁ
lengths approaches the Golden
Ratio.
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Bernoulli Spiral
When the growth of the organism is
proportional to its size

Bernoulli Spiral
When the growth of the organism is
proportional to its size

"Phi" is named after the Greek sculptor Phidias

Is there
life after
Tand e?

Golden Ratio: the divine proportion
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Definition of ¢ (Euclid)

Ratio obtained when you divide a line segment into two unequal
parts such that the ratio of the whole to the larger part is the
same as the ratio of the larger to the smaller.

_AC _AB

9= °AB BC

Continued Fraction Representation
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Expanding Recursively
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Remember?

We already saw the convergents of this CF
11111111111,.]
are of the form

Fib(n+1)/Fib(n)
Hence: lim, - Q= 1+5
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Continued Fraction Representation
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‘ detour and look at
a different

representation.
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Let us take a slight
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Sequences That Sum To n

Let f,.; be the number of different
sequences of 1's and 2's that sum to n.

Example: f5 =5

4= 2+2
2+1+1
1+2+1
1+1+2
1+1+1+1

Sequences That Sum To n

Let f,.; be the number of different
sequences of 1's and 2's that sum to n.

fn+1 = fn + fn-l
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Sequences That Sum To n

Let f,.; be the number of different
sequences of 1's and 2's that sum to n.
fl = 1 f3 =2

0 = the empty sum 2=1+1
fz =1 2

1=1
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Sequences That Sum To n

Let f,.; be the number of different
sequences of 1's and 2's that sum to n.

fn+1 =

# of
sequences

fn + fn-l

# of

beginning
withal

sequences

beginning
witha 2

Fibonacci Numbers Again

Let f,.; be the number of different
sequences of 1's and 2's that sum to n.

fn+1 = fn + fn-l




Visual Representation: Tiling
Let f,.; be the number of different

ways to tile a 1 x n strip with squares
and dominoes.

Visual Representation: Tiling

1 way to tile a strip of length O

1 way to tile a strip of length 1:

2 ways to tile a strip of length 2:

Let's use this visual
representation to
prove a couple of

Fibonacci identities.
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Visual Representation: Tiling

Let f,., be the number of different
ways to tile a 1 x n strip with squares
and dominoes.
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fn+1 = fn +
.1 is number of ways fo title length n.
- f, tilings that start with a square.
f,.1 tilings that start with a domino.
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Fibonacci Identities

Some examples:

Fon= Fi+ Fy+ Fg+ .t Fppye—hrd
2 1 3 5 2n-1 5%

l:m+n+1 = l:m+1 I:n+1 + I:m I:n

(F:n)2 = Fn—l l:n+1 + (_l)n
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(Fn)2 = I'::n-l I::n+1 + (_1)n

(Fn)2 = I'::n-l I::n+1 + (_1)n
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(F:n)2 = I:n-l I:n+1 + (_l)n
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F, tilings of a strip of length n-1
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(F:n)2 = I:n-l I:n+1 + (_l)n
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(F,)? tilings of two strips of size n-1
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(r:n)2 = Fn-l Fn+1 + (_l)n

n

A
- N
11 .- |
Il 1
Draw a vertical “fault
line" at the rightmost

position (<n) possible
without cutting any

dominoes
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(Fn)2 = F:n-l I::n+1 + (_l)n
e
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Swap the tails at the
fault line to map to a
tiling of 2n-1'stoa

tiling of an n-2 and an n.

(Frn)?

A

= Fn—l I:n+1 +

Q4

n
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Swap the tails at the
fault line to map to a
tiling of 2n-1'stoa

tiling of an n-2 and an n.

More random facts

The product of any four consecutive Fibonacci
numbers is the area of a Pythagorean triangle.

The sequence of final digits in Fibonacci numbers
repeats in cycles of 60. The last two digits repeat in
300, the last three in 1500, the last four in 15,000,
etc.

Useful to convert miles to kilometers.
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The Fibonacci Quarterly
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w‘ Let's take a break

from the Fibonacci
‘ Numbers in order to

talk about polynomial

division.
/

vim
Xl - 1
T+ X+ X2+ X34 4+ Xn1aXn =
X-1
The Geometric Series
vim
1+ X1a X2+ X34+ .+ X0+ .. = !
1-X

The Infinite Geometric Series

How to divide polynomials?

1+X +X?

Tox | 1-x[
-1-X)

X
-(X-X?)

X2
_(XZ - X3)

X3

= 1EXEXZ+ X3 X E XD+ X0+ X+ .

Vil
Xl - 1

X-1

1+X1+ X2+ X3+ + X014 Xn =

Xl - 1 -1

X-1 X-1

T+ XL+ X2+X3+  +Xn+ . =

(X1 (1 XE+ X2+ X3+ .+ X0+ )
XU+ X2+ X3+, FX0 X0
S 1-XI-XZ-X 3o X=X X




Something a bit more complicated

X+ X2+ 2X3 + 3X! +5X5+ BX®
1-x-% | x
_(X - X? - X3)
X2+ X
_(XZ - X3 - X4)
23+ X*
1-X-X? (2X3 - 2X*- 2X0)
34+ 2
-(3X4 - 3%5 - 3X¢)
BX® + 3X°
-(5X5 - 5X6 - 5X)

8X6 + 5X7
-(8X6 - 8X7 - 8X8)

1+X1+ X2+ X3+ .+ XN+ . = !
1-X
1+ X+ X2+ .
1-x| 1
-(1-X)
X
-(X - X?)
XZ
_(XZ_XB)
X3
120 |
Hence
X
1-X-X2

= Ox1+ 1 X1+ 1 X2+ 2X3 + 3X4+ 5X5 + 8X6 + .
0
0=X

= F01+F1X1+F2X2+F3X3+F4X4+
F5X5+F6X6+...

Going the Other Way
(1-X- X?) x

(Fol+FyXt+F, X2+ . +F, X024+ F  Xt1sF, X+ .

Going the Other Way

(1 - X- X?) x

(Fol+FyXteFy X2+ +F ,X2+F ; XnleF X0+

=(Fol+ Fy XU+ Fy X2+ .+ Fp Xv2 + Fpy Xnl e Fp X0 s
~FoXU-F X2 - . - Foy X02 - F, , X1 - Fpy X0 -
“FoX?- . - Fpy X02 - F g X0l F,, Xn- .

Fozo,F1=1

=Fo1+(F-F) X!
=X

Thus

F01+F1X1+F2X2+...+Fn_1X“‘1+FnX"+...
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So much for
trying to take a
break from
the Fibonacci
numbers...
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Addition and Multiplication

5 (ab) X"

xhoo= % X

% = ZbA;X”'
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Formal Power Series

Infinite polynomials a.k.a. formal power series

1=00 .
= ) a;X'
1=0

Multiplying two power series
fef, = (T I X')
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(1+aXt+a@X2+ . +aXn+..) Fibonacci Numbers
% (1+bX+b2X2+ . +brXn+ )=
k
— )_J ( JLK d> Xk Recurrence Relation Definition
k70 7 F,=0, F=1
N~ - ” 0 1
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Getting the Fibonacci Power Series
2 (
(1-x-%") P, = X b e )

S 0. X
> fa= (I-%-x2)

@@j P(1-X-X2) = X
P = X/(1-X-X2)

Solve for P.
P-PX-PX2=X

What is the Power Series
Expansion of x/(1-x-x?) ?

What does this look like
when we expand it as an

B

§ amd —é one vof’fag e

Since the bottom is quadratic we
can factor it.

@Z X / (1-X-X?) =
- X/(1- X)(1 - (-9)'X)
where @ =

"The Golden Ratio”

infinite sum?
y 20 |
X
(1- eX)(1- (-9)1X)
Zn 0..0 ? Xn

Linear factors on the bottom

X
(1- HN-(E5)% )
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(1+axt+a@xz+ +axn+ ) (1+bX1+b2X2+ +brXn+ )=

1
(1 - aX)(1-bX)

- ZH:O [oe] q”*l- b Xn
” a-b

Geometric Series (Quadratic Form) ‘

Vil
X X
(1-@O(1- (o) (= X=X

@H'('(p'l)nd n+1
Zn=O.. ~ /5 X

W
=D By

Power Series Expansion of F |
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=FEX +EX +FEX + X+ =

1-x-x?

B,

1 x X
(1 - eX)(1- (-¢X)

+1- (~q@1)n+l
2n-0. > @_((fg) X"
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Geometric Series (Quadratic Form) ‘

> Fn = ?W“’ (—l_ﬁ—)m
Vg
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Leonhard Euler (1765)
J.P. M. Binet (1843)
A de Moivre (1730)

The ith Fibonacci number is:
=%

=
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Less than
277

What is the coefficient of
Xk in the expansion of:

(T+X+X2XBeX4 ... )2

Each path in the choice tree for the
cross terms has n choices of exponent
ey, e, ..., e,20. Each exponent can be
any natural number.

Coefficient of Xk is the number of
non-negative solutions to:
ejte,+...+te =k

e+ et . ve=k 7

R

R

What is the coefficient of
Xk in the expansion of:

(T+#X+X2EXE X4 .02

n+k-1
n-1

o B S

Fibonacci Numbers
Arise everywhere
Visual Representations
Fibonacci Identities

Polynomials
The infinite geometric series
Division of polynomials
Representation of Fibonacci numbers
as coefficients of polynomials.

Generating Functions and Power Series
Simple operations (add, multiply)
Quadratic form of the Geometric Series
Deriving the closed form for F,
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What is the coefficient of XX in the
expansion of:

(GO+G1X+02X2+Q3X3+...)(1+X+X2+X3+..

=(ag+ aX +@X2+azX3+ )/ (1-X) ?

(ag+aX+aX2+asX3+..)/(1-X)

Al-Karaji's Identities
Zero_Ave 1/(1-X);
First_Ave 1/(1-X)%;
Second_Ave = 1/(1-X)3;

Output =
1/(1-X)? + 2X/(1-X)3

(1-X)/(1-X)3 + 2X/(1-X)3
= (1+X)/(1-X)3

)

Some simple power series
1= X ox+

> 1

154 AR

o L= 1xF (w)x BN

0’7(): s 2x 130k

2

= 1.
C )3 Z,AYIH 7(

x+57<+é-><2*""

(1+X)/(1-X)3
outputs <1, 4,9, .>

X(1+X)/(1-X)3
outputs <0, 1, 4,9, .>

B

The kt entry is k2
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X(1+X)/(1-X)3= X kXK

What does X(1+X)/(1-X)* do?

@%&@%

X(1+X)/(1-X)* expands to :

Y S, X«

where S, is the sum of the
first k squares

Ahal Thus, if there is an
alternative interpretation of
the kth coefficient of
i, X(1X)/(1-X)*
we would have a hew way to
get a formula for the sum of
the first k squares.

Vil
Coefficient of Xk in P, = (X2+X)(1-X)*is

the sum of the first k squares:

— (X2 o (B3 ok
_(X +X)k2::< 3 )X

found that:

57 T

|
Using pirates and gold we\

Polynomials give us closed form
expressions
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