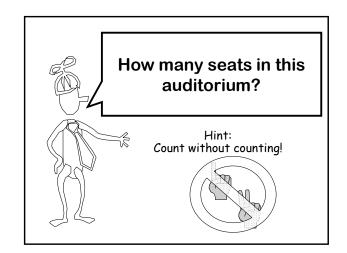
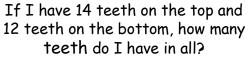
Great Theoretical Ideas In Computer Science				
John Lafferty		CS 15-251	Fall 2005	
Lecture 6	Sept 15, 2005	Carnegie Mello	n University	
Counting I: One To One Correspondence and Choice Trees				
correspondence und choice Trees				





Addition Rule

Let A and B be two <u>disjoint</u> finite sets.

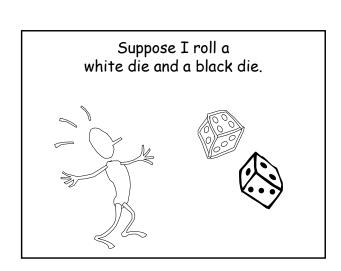
The size of $A \cup B$ is the sum of the size of A and the size of B.

$$|\mathbf{A} \cup \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}|$$

Corollary (by induction)

Let A_1 , A_2 , A_3 , ..., A_n be disjoint, finite sets.

$$\left|\bigcup_{i=1}^{n} \mathbf{A}_{i}\right| = \sum_{i=1}^{n} \left|\mathbf{A}_{i}\right|$$



$$S = Set$$
 of all outcomes where the dice show different values.
 $|S| = 2$

 $A_i \equiv$ set of outcomes where the black die says i and the white die says something else.

$$|S| = \left| \bigcup_{i=1}^{6} A_{i} \right| = \sum_{i=1}^{6} |A_{i}| = \sum_{i=1}^{6} 5 = 30$$

S = Set of all outcomes where the dice show different values. |S| = ?

 $T \equiv$ set of outcomes where dice agree.

$$|S \cup T| = \# \text{ of outcomes} = 36$$

$$|S| + |T| = 36$$
 $|T| = 6$

$$|S| = 36 - 6 = 30$$

 $S \equiv Set$ of all outcomes where the black die shows a smaller number than the white die. |S| = ?

 $A_i \equiv$ set of outcomes where the black die says i and the white die says something larger.

$$S = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$$

$$|S| = 5 + 4 + 3 + 2 + 1 + 0 = 15$$

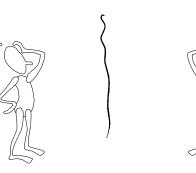
 $S \equiv Set$ of all outcomes where the black die shows a smaller number than the white die. |S| = ?

 $L \equiv$ set of all outcomes where the black die shows a larger number than the white die.

It is clear by symmetry that |S| = |L|.

Therefore
$$|S| = 15$$

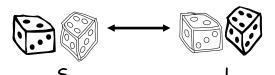
It is clear by symmetry that |S| = |L|.



2

Pinning down the idea of symmetry by exhibiting a correspondence.

Let's put each outcome in S in correspondence with an outcome in L by swapping the color of the dice.



Pinning down the idea of symmetry by exhibiting a correspondence.

Let's put each outcome in S in correspondence with an outcome in L by swapping the color of the dice.

Each outcome in S gets matched with exactly one outcome in L, with none left over.

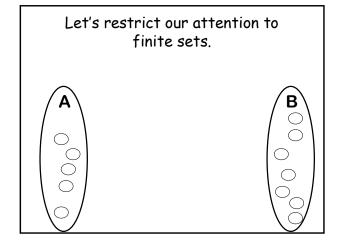
Thus: | 5 | = | L |.

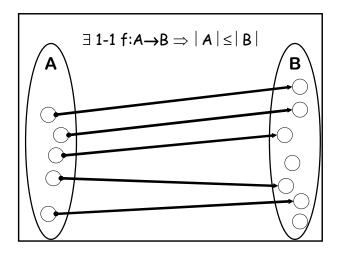
Let $f:A \rightarrow B$ be a function from a set A to a set B.

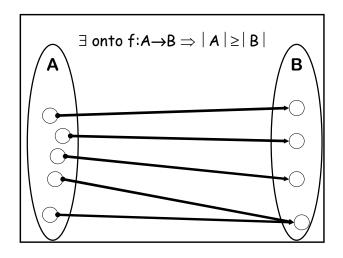
f is 1-1 if and only if $\forall x,y \in A, x \neq y \Rightarrow f(x) \neq f(y)$

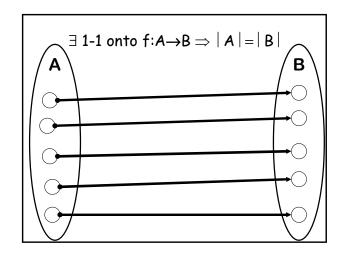
f is onto if and only if $\forall z \in B \exists x \in A f(x) = z$

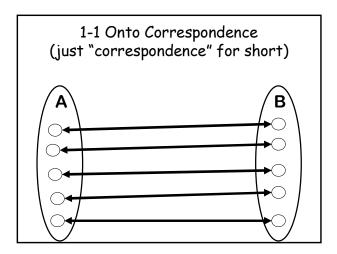
Let $f:A \rightarrow B$ be a function from a set A to a set B. f is 1-1 if and only if $\forall x,y \in A, \ x \neq y \Rightarrow f(x) \neq f(y)$ f is onto if and only if $\forall z \in B \ \exists x \in A \ f(x) = z$ There Exists





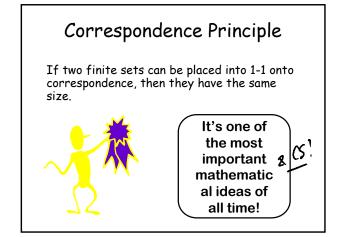






Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.



Question: How many n-bit sequences are there?				
000000	ßà	0		
000001	ßà	1 ←		
000010	ßà	2		
000011	ßà	3		
	•••			
111111	ßà	2 ⁿ -1		
2 ⁿ sequences				

 $S = \{a,b,c,d,e\}$ has many subsets.

The empty set is a set with all the rights and privileges pertaining thereto.

Question: How many subsets can be formed from the elements of a 5-element set?

а	Ь	С	d	е
0	1	1	0	1

e}

1 means "TAKE IT"
0 means "LEAVE IT"

Question: How many subsets can be formed from the elements of a 5-element set?

а	Ь	С	d	e
0	1	1	0	1

Each subset corresponds to a 5-bit sequence (using the "take it or leave it" code)

$$S = \{a_1, a_2, a_3, ..., a_n\}$$

 $b = b_1b_2b_3...b_n$

$$a_1$$
 a_2 a_3 ... a_n b_1 b_2 b_3 ... b_n

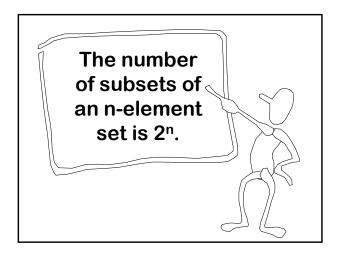
$$f(b) = \{a_i | b_i = 1\}$$

$$f(b) = \{a_i | b_i = 1\}$$

f is 1-1: Any two distinct binary sequences b and b' have a position i at which they differ. Hence, f(b) is not equal to f(b') because they disagree on element a_i .

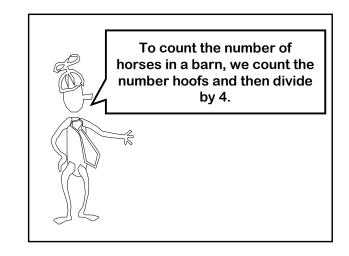
$$f(b) = \{a_i | b_i = 1\}$$

f is onto: Let S be a subset of $\{a_1,...,a_n\}$. Let $b_k = 1$ if a_k in S; $b_k = 0$ otherwise. $f(b_1b_2...b_n) = S$.

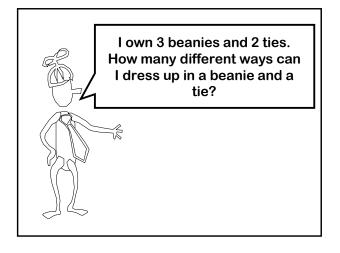


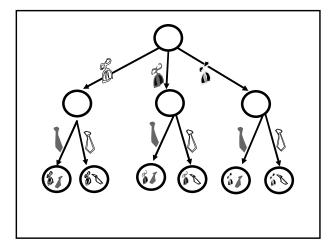
Let $f:A \rightarrow B$ be a function from a set A to a set B. f is 1-1 if and only if $\forall x,y \in A, \ x \neq y \Rightarrow f(x) \neq f(y)$ f is onto if and only if $\forall z \in B \ \exists x \in A \ f(x) = z$

Let $f:A \rightarrow B$ be a function from a set A to a set B. f is a 1 to 1 correspondence iff $\forall z \in B \exists \text{ exactly one } x \in A \text{ s.t. } f(x) = z$ f is a k to 1 correspondence iff $\forall z \in B \exists \text{ exactly k } x \in A \text{ s.t. } f(x) = z$



If Finite set A
has a k to 1
correspondence
to finite set B,
then #B = #A/k





A restaurant has a menu with 5 appetizers, 6 entrees, 3 salads, and 7 desserts.

How many items on the menu?

5 + 6 + 3 + 7 = 21

How many ways to choose a complete meal?

 \bullet 5 * 6 * 3 * 7 = 630

A restaurant has a menu with 5 appetizers, 6 entrees, 3 salads, and 7 desserts.

How many ways to order a meal if I might not have some of the courses?

 \bullet 6 * 7 * 4 * 8 = 1344

Hobson's restaurant has only 1 appetizer, 1 entree, 1 salad, and 1 dessert.

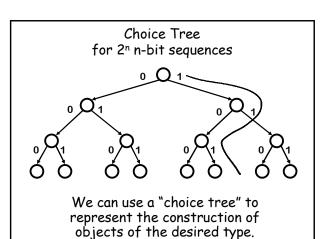
2⁴ ways to order a meal if I might not have some of the courses.

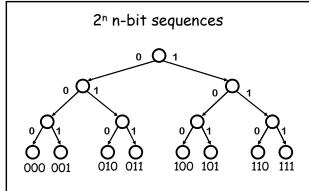
Same as number of subsets of the set {Appetizer, Entrée, Salad, Dessert}

Leaf Counting Lemma

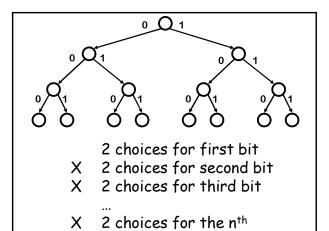
Let T be a depth n tree when each node at depth $0 \le i \le n-1$ has P_{i+1} children. The number of leaves of T is given by:

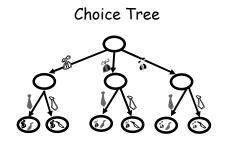
 $P_1P_2...P_n$



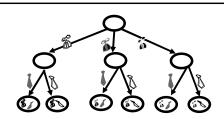


Label each leaf with the object constructed by the choices along the path to the leaf.





A <u>choice tree</u> is a rooted, directed tree with an object called a "choice" associated with each edge and a label on each leaf.



A choice tree provides a "choice tree representation" of a set S, if

1) Each leaf label is in S, and each element of S is some leaf label

2) No two leaf labels are the same

We will now combine the correspondence principle with the leaf counting lemma to make a powerful counting rule for choice tree representation.

Product Rule

IF S has a choice tree representation with P_1 possibilities for the first choice, P_2 for the second, and so on,

THEN

there are $P_1P_2P_3...P_n$ objects in S

Proof: The leaves of the choice tree are in 1-1 onto correspondence with the elements of S.

Product Rule

Suppose that all objects of a type S can be constructed by a sequence of choices with P_1 possibilities for the first choice, P_2 for the second, and so on.

TF

1) Each sequence of choices constructs an object of type S

AND

2) No two different sequences create the same object

THEN

there are $P_1P_2P_3...P_n$ objects of type S.

How many different orderings of deck with 52 cards?

What type of object are we making?

Ordering of a deck

Construct an ordering of a deck by a sequence of 52 choices:

52 possible choices for the first card;

51 possible choices for the second card;

50 possible choices for the third card;

1 possible choice for the 52cond card.

How many different orderings of deck with 52 cards?

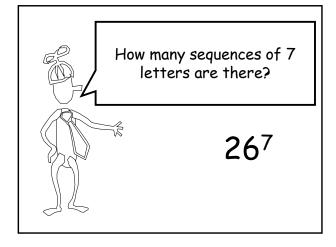
By the product rule:

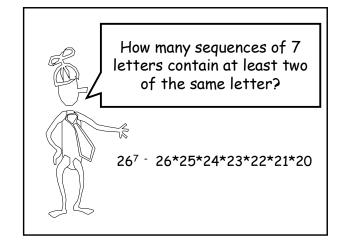
52 * 51 * 50 * ... * 3 * 2 * 1 = 52!

52 "factorial" orderings

A <u>permutation</u> or <u>arrangement</u> of n objects is an ordering of the objects.

The number of permutations of n distinct objects is n!





Sometimes it is easiest to count the number of objects with property Q, by counting the number of objects that do not have property Q.

A formalization

Let S(x): $\Sigma^* \to \{\text{True}, \text{False}\}\$ be any predicate.

We can associate S with the set: $OBJECTS_S = \{x \in \Sigma^* \mid S(x)\}$ the "object space" S (or objects of type S)

When OBJECTS_S is finite, let us define $\#OBJECTS_S$ = the size of OBJECTS_S In fact, define #S as $\#OBJECTS_S$

Object property Q on object space S

Consider Q(x): $OBJECTS_S \rightarrow \{True, False\}$

Define $\neg Q(x)$: OBJECTS_S \rightarrow {True, False} As Input(x); return NOT Q(x)

Proposition: $\#Q = \#S - \#(\neg Q)$

How many of our objects have property Q in object space 5?

#Q

= $\#OBJECTS_S - \#(\neg Q)$

Helpful Advice:

In logic, it can be useful to represent a statement in the contrapositive.

In counting, it can be useful to represent a set in terms of its complement.

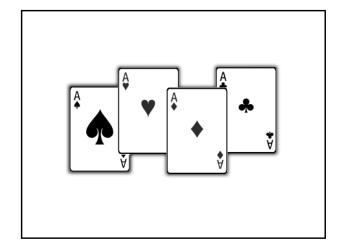
If 10 horses race, how many orderings of the top three finishers are there?

10 * 9 * 8 = 720

The number of ways of ordering, permuting, or arranging r out of n objects.

n choices for first place, n-1 choices for second place, . . .

$$= \frac{n!}{(n-r)!}$$



Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

• 52 * 51

How many unordered pairs?

52*51 / 2 ß divide by overcount
 Each unordered pair is listed twice on a list of the ordered pairs, but we consider the ordered pairs to be the same.

Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

• 52 * 51

How many unordered pairs?

• 52*51 / 2 ß divide by overcount We have a 2 to 1 map from ordered pairs

to unordered pairs. Hence: the #unordered pairs = (#ordered pairs)/2

Ordered Versus Unordered

From a deck of 52 cards how many ordered 5 card sequences can be formed?

• 52 * 51 * 50 * 49 * 48

How many orderings of 5 cards?

5!

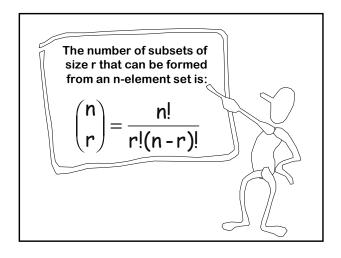
How many unordered 5 card hands? pairs?

• 52*51*50*49*48 / 5! = 2,598,960

A <u>combination</u> or <u>choice</u> of r out of n objects is an (unordered) set of r of the n objects.

The number of r combinations of n objects:

$$\frac{n!}{r!(n-r)!} = \binom{n}{r}$$



How many 8 bit sequences have 20's and 61's?

Tempting, but incorrect:

8 ways to place first 0, times

7 ways to place second 0

Violates condition 2 of product rule! Choosing position i for the first 0 and then position j for the second 0 gives the same sequence as choosing position j for the first 0 and position i for the second.

How many 8 bit sequences have 2 0's and 6 1's?

1) Choose the set of 2 positions to put the 0's. The 1's are forced.

$$\binom{8}{2} \times 1 = \binom{8}{2}$$

2) Choose the set of 6 positions to put the 1's. The 0's are forced.

$$\binom{8}{6} \times 1 = \binom{8}{6}$$

Symmetry in the formula:

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \binom{n}{n-r}$$

How many hands have at least 3 aces?

 $\binom{4}{3}$ = 4 ways of picking 3 of the 4 aces.

= 1176 ways of picking 2 cards from the remaining 49 cards.

 $4 \times 1176 = 4704$

How many hands have at least 3 aces?

How many hands have exactly 3 aces?

(4) - A ways of picking 3 of the A ages

 $\binom{48}{2}$ = 1128 ways of picking 2 cards non – ace cards.

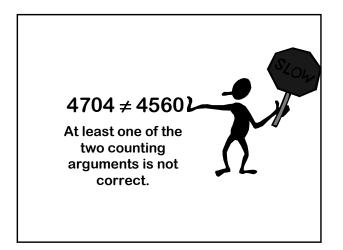
 $4 \times 1128 = 4512$

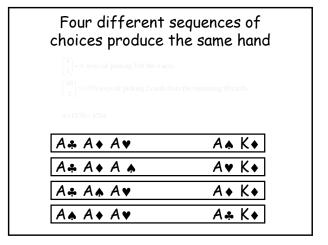
How many hands have exactly 4 aces?

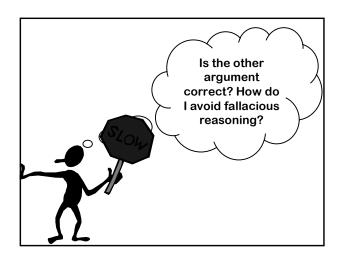
 $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$ = 1 way of picking 4 of the 4 aces.

8 ways of picking one of the remaining cards

4512 + 48 = 4560







The Sleuth's Criterion

Condition (2) of the product rule:

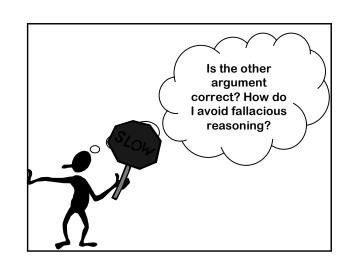
For any object it should be possible to reconstruct <u>the</u> sequence of choices which lead to it.

1) Choose 3 of 4 aces
2) Choose 2 of the remaining cards

A* A* A* A* A* K*

Sleuth can't determine which cards came from which choice.

A* A	A♠ K♦
A* A * A *	A♥ K♦
A	A♦ K♦
<i>A</i>	A÷ K♦



- 1) Choose 3 of 4 aces
- 2) Choose 2 non-ace cards

A * Q * A * A * K *

Sleuth reasons:

The aces came from the first choice and the non-aces came from the second choice.

- 1) Choose 4 of 4 aces
- 2) Choose 1 non-ace

A + A + A + A + K +

Sleuth reasons:

The aces came from the first choice and the non-ace came from the second choice.

- Correspondence Principle
 If two finite sets can be
 placed into 1-1 onto
 correspondence, then they
 have the same size
- · Choice Tree
- Product Rule two conditions
- Counting by complementing it's sometimes easier to count the "opposite" of something
- Binomial coefficient

 Number of r sets of an n set

Study Bee