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Ancient Wisdom:
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Power
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The Egyptians
used decimal
numbers but
multiplied and
divided in binary

20 |
Egyptian Multiplication a times b Egyptian Multiplication 15 times 5
by repeated doubling by repeated doubling
b has some n-bit representation: b, b, ,..b;by b= Lg
b has some n-bit representation: b, 1b,,...bsbg Starting with a, = (1101)
C\ o) 5 repeatedly double largest number so far J2
o = to obtain: a, 2a, 4aq, ..., 2"a
Starting with q, Sum toasther all the 2% whore b. < 1
repeatedly double largest number so far U TogeTher o The Ta Where
to obtain: 2aq, 4aq, ..., 2"1
o obtain: a, 2a, 4aq, a o, 20 4o @ % /’
Sum together all the 2ka where b = 1 odd Mewy = 130v
o+ 4o
20 | Vil
Why does that work? Why does that work?
b= bg20 + b2l + b22 +.+ b, 2n b= bg20 + b2l + b,22 +..+ b, 2r
© 1 = Oq + la + 2q + ..+ n-1
ﬂlOI)ZZ 1.2° 402 44 . ‘_23 T ab = by2% b;2%a b,2%2a + ..+ b, 2"la
. “ If by is 1 then 2ka is in the sum.
ob = ﬂlbo 2+ &-,5‘4 2 4 - 4ab,2 Otherwise that term will be 0.
2 (0Dbe + (a2) b+ 402" Db,
_ “
=2 ?)
2: k=)




Wait!
How did the Egyptians do

the part where they
Q converted b to binary?

They used repeated
halving to do base
conversion. Consider ...

Egyptian Base Conversion

Output stream will print right to left. ,5 -(/V'WI? NS /’
Input X; bl
repeat { 6 nm y o
if (X is even) 3 %MJL?N /j
then print 0; )
else /, (/\A.BIA:? N 1
{X:= X-1; print 1.}
X:=X/2;
} until X=0; (4101)2 = (3.

/Some‘rimes the Egyptian
combined the base
conversion by halving
and multiplication by
doubling into a single

\algor‘i‘rhm

J

Rhind Papyrus (1650 BC)

70*13
TME@M
7O 13 e/ 70
140 e
280 3 v 350
560 (R B

Rhind Papyrus (1650 BC)

70*13
70 13 * 70
140 6
280 3 x 350
560 1 ox 910

Binary for 13 is 1101 = 23 + 22 + 20
70*13 = 70*23 + 70*22 + 70*20




Rhind Papyrus (1650 BC)
Division: 184/17

17
34
68
136
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184 48 14

Rhind Papyrus (1650 BC)
Division: 184/17

17
34
68
136

[o T N
*

*

184 48 14

184 = 17*8 + 17*2 + 14
184/17 = 10 with remainder 14

This method is called
"Egyptian
Multiplication/Division”
or

"Russian Peasant
Multiplication/Division".

Standard Binary Multiplication
= Egyptian Multiplication

X X k X %X % % % a

X 1101 -3
XX KXKxKkkk*x a
O 0o o0 o o0
X Xk Xk k k k Xk % do
* k kX Xk Xk k k % g
XXk KhkhkkhkkXkxhxkxx*x [

Vil
Wow. Those Russian
peasants were pretty
smart.
Vil

Our story so far...

We can view numbers in
many different, but
corresponding ways.

Representation:
Understand the relationship between
different representations of the same

information or idea

1 O
2 OO
3 00O




Our story so far...

Induction is how we define
and manipulate
mathematical ideas.

Induction has many guises.
\ MasTer their interrelationship.

+ Formal Arguments
« Loop Invariants

* Recursion

+ Algorithm Design
* Recurrences

20 |
Even vler'y
simple
computational O O ©
problems can
be surgrisingly
subtle.
20 |
b:=a8
bi=a*a b:=a*a
b:=b*a b:=b*b
b:=b*a b:=b*b
b:=b*a
b:=ba h hod |
o This method costs only 3
b:=b*a multiplications. The
b:=b*a savings are significant if
b:=a8 is executed often.

Let's Articulate A New One:

Abstraction:
Abstract away the inessential
features of a problem or solution

Compiler Translation

A compiler must translate a high level
language (e.g., C) with complex
operations (e.g., exponentiation) into a
lower level language (e.g., assembly)
that can only support simpler
operations (e.g., multiplication).

General Version

Given a constant n,
how do we implement
b:=an
with the fewest number
of multiplications?




Powering By Repeated

Multiplication
Input: a,n
Output: A sequence starting with a,

ending with a, such that
each entry other than the
first is the product of two
previous entries.

Example
Input: ab
OLSI (a, o a at as)

(v & a* 2%

2 a & &)

Definition of M(n)

M(n) = The minimum number of
multiplications required to
produce a" from a by
repeated multiplication

T M) ¢ T

What is M(n)? Can we calculate it
exactly? Can we approximate it?

Exemplification:
Try out a problem or
solution on small examples.

(4
&

o@@ §
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Some Very Small Examples

M(n) = The minimum number of multiplications
required to produce a" from a by
repeated multiplication

M =o [a]

mlzy =1 . [a &*]

m (v) m 2 4
M(&’) <3 [aa o ]

1

M(8)=?

a, a2, a*, a8 is one way to make a®
in 3 multiplications.

What does this tell us about the
value of M(8)?




M(8)=? ?<M(8)<3

a, a2, a4, a8 is one way to make a®
in 3 multiplications.

What does this tell us about the
value of M(8)?

M(8) < 3\

Upper Bound

?2<M(8)<¢3
3 <M(8)

Exhaustive Search. There are only two
sequences with 2 multiplications.
Neither of them make 8:

a,a?, a3&a, a?, a*

M) 23

12" | - -
Applying Two Ideas What is the more essential
representation of M(n)?
Abstraction:
Abstract away the inessential
features of a problem or solution
Representation: Abstractior ] Representation:
Understand the relationship between Abstract away the inessential Understand the relationship between
different representations of the same features of a problem or solution different representations of the same
information or idea information or idea
1 O 1 O
2 OO 2 OO
3 00O OO0




The "a" isa

ax x a¥is ax*y

. Everything besides the
N exponent is inessential. This
should be viewed as a problem
of repeated addition, rather
than repeated multiplication.

Y

®

Addition Chains

M(n) = Number of stages required to
make n, where we start at 1
and in each subsequent stage
we add two previously
constructed numbers.

Examples

Addition Chain for 8:
12358

Minimal Addition Chain for 8:
1248 M(g):g

Addition Chains Are A Simpler Way To v
Represent The Original Problem

Abstraction:
Abstract away the inessential
features of a problem or solution

Representation:
Understand the relationship between
different representations of the same

information or idea

1 O
2 OO
3 00O

Some Addition Chains For 30

249 (6 29 28 30 (3
2 4 ¢ 12 2¢ 30 @
2 4 ¢ lo 20 30 ®
2% ¢ (0 20 W ®
23 ¢ (0 5 3o @

~ — —~ —~— =




Some Addition Chains For 30

1 2 4 8 16 24 28 30

1 2 4 5 10 20 30

1 2 3 5 10 15 30

1 2 4 8 10 20 30

Binary Representation

Let B, be the number of "1"s in the binary
representation of n.

E.g.: Bs = 2 since 101 = binary representation of 5

B,=3 (of),= 13

Proposition: B, < | log, (n) ] +1
(Tt is at most the number of bits in the binary
representation of n.)

Binary Method Applied To 30

Binary
30 11110
{ Ao =
QOO0 ey,
24 28 30 4 oF aoldibioe

< [#u;rﬁ m Mo )

=/
#9f addihio < [y
+ Bn-1) < 2LlgnJ

?2<M(30) <6
?<M(n) ¢?

e

Phase

Phase

Binary Method
Repeated Squaring Method
( Repeated Doubling Method)

I (Repeated Doubling)
For | log, n| stages:
Add largest so far to itself
1,2,4,8,16,...)

I (Make n from bits and pieces)

Expand n in binary to see how n is the sum
of B, powers of 2. Use B, - 1 stages to make n
from the powers of 2 created in phase I

Total cost: | log, n| + B, -1

Rhind Papyrus (1650 BC)
What is 30 times 5?

waw;‘).f"""

30
I3 o

7 # 30
3 70

1 5o
Hof chuck = bn

5 #4 adliky = Bn|

skt by ] 2,




1= | 12~ |
Rhind Papyrus (1650 BC) Rhind Papyrus (1650 BC)
What is 30 times 5? Actually used faster chain for 30*5.
15 30 by a chain of 7: 1 5
2 10 2 10 30 by a chain of 6:
4 20 124816242830 4 20
8 40 8 40 124810 20 30
16 80 Repeated doubling is 10 50
24120 the same as the 20 100
28 140 Egyptian binary 30 150
30150 multiplication
A2 | A2~ |
The Egyptian Connection 4,4\5&“"; -
b ~4"
/ W/‘{)}
A shortest addition chain for n gives a [ M(“) S U”JZ N
shortest method for the Egyptian approach
to multiplying by the number n. < QLV’&ZU
The fastest scribes would seek to know
M(n) for commonly arising values of n.
Abstra Abstraction . m AbstractTo_n N m
Tontures of  problem of sonan fontures of  probiem or souOn
We saw that applying .
ABSTRACTION to the What about applying
PROBLEM simplifies the ABSTRACTION fo the
SOLUTION?

issue.

Let SOLUTION be the
Repeated Squaring
Algorithm (RQA).

gy < PROBLEM = Raising A
., Number To A Power.




Abstraction
Abstract away the inessential
features of a problem or solution

'

What features did our
solution (RQA) actually
make use of?

For example, does the RQA
require the underlying
objects to be numbers?

Abstraction
Abstract away the |nessermal
features of a problem

The repeated squaring

Abstraction
Abstract away the inessential
features of a problem or solution

method works for

modular arithmetic
and

S for raising a matrix to a

power.

The repeated squaring
method works for any
notion of “multiplication”
that is associative.

(a*b)*c = a*(b*c)
ak is well defined
ax * ar = @Y

?2<M(30) ¢6
? < M(n) <2Lllog, n]

Generalization

Ahwact awny the inassenﬁal
features of a problem or

E ‘ > Solution

Always ask yourself what your
solution actually requires.

A Lower Bound Idea

You can't make any number bigger
than 2" in n steps.

1248163264 ...

or is this a failure
of imagination?

10



Theorem: For all n >0, no n stage addition
chain will contain a number greater than 2n.

S = ””"U ad diton o vk k adlibro cow
wﬁ?)«o/ﬂda a,wwAbMSZkV

Thm : V’ka?O/ -g/c. :

boaw Coue + k=0 e

Theorem: For all n >0, no n stage addition
chain will contain a number greater than 2n.

’[b;mw(ua)/} 1H) fhat Sin b Fe.

i, Ay b efmond by 7
k)™ addik'm g add d=gehos 3 nourbows
poduad vy ok mask k addifmo . By .4,
fwone <25 Hing fha neonling mambn
< K42k < 2% (pe Seyy bt ) @

Let S, be the statement that no k stage addition
chain will contain a number greater than 2k

Base case: k=0. Sy is true since nho chain can
exceed 20 after O stages.

\7’k>O, Sk :>Sk+1

At stage k+1 we add two numbers from the
previous stage. From S, we know that they
both are bounded by 2. Hence, their sum is
bounded by 2k1- No number greater than 2k
can be present by stage k+1.

Another Proof
(using invariants, this time)

Invariant: All the numbers created by
stage n are less than or equal to 2"

The invariant is true at the start.

Suppose we are at stage k. If the invariant
is true, then the two numbers we decide to
sum for stage k+1 are ¢ 2k and hence create a
number less than or equal to 2k*1, The
invariant is thus true at stage k+1.

Change Of Variable

All numbers obtainable in m stages are
bounded by 2™. Let m = log,(n).

= i’“%&Z“’? -S»k’ata, g Mba;f:}iuul

= w rngzn7 .fJ-ve/,/ ke rv’oa&ua’ﬂ <n
=) M(ﬂ) 2 rl/Od‘2'VL7

?<M(30) <6
[log, n1< M(n) < 2 Llog, n
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Theorem: 2! is the largest number that
can be made in i stages, and can only be
made by repeated doubling

l’z,a ydicch m
Bone Cast ! 7
duhioly - 2 6o 5d 2" G o aldikm
5 ek ol 2420 By wnduchly Yot
wly gt 2 by repentsd dndly gy
e m'wr:;u tha oo

Theorem: 2! is the largest number that
can be made in i stages, and can only be
made by repeated doubling

Base i = 0 is clear.

To make anything as big as 2' requires
having some X as big as 2i! in i-1 stages.

By I.H., we must have all the powers of 2
up to 2! at stage i-1. Hence, we can only
double 21 at stage i.

The theorem follows.

5< M(30)?
K‘T‘,m M(30) = 5.

h. 1S+1§ 1
ln addihm £5, wwok add Vet (6414,

Cooe 1: (LY m 5 addbm
D ftr & addibim, 9Jo+ lLfI -

ok WW&»@M@N.

WAt ras&w

Suppose M(15) = 4
Giat, 2 ¢ added (5415 vn Shalh.

MGS) =4.
s ded H7
In addibing 44, mot 2

2 rut poduce both 7,8 m Snddibn.

@Q{M(soyé |

Lot Lo Mbs)-5
=2 Cage 2 rof /)c.fj'/[’le, > &ﬂ/ﬂ.p&&&,@
> M3H2 6.
120 |
M(30)=6

[log, n1< M(n) < 2 Llog, n
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Rhind Papyrus (1650 BC)

1 5 30 =1248102030
2 10

4 20

8 40

10 50

20 100

30 150

Corollary (Using Induction)
M(aiaza3...a,) < M(ap)+M(az)+..+M(a,)

Proof: For n=1 the bound clearly holds. Assume
it has been shown for up to n-1. Now apply
theorem using a= a;a,a3...a,; and b=a, to obtain:

M(a;0203...a,) < M(010203...0,1) + M(a,)

By inductive assumption,
M(a;0203..0,1) < M(ap) + M(az) + ... + M(a,.1)

Factoring Bound

M(a x b) < M(a) + M(b)

Proof:

- Construct a in M(a) additions

+ Using a as a unit follow a construction
method for b using M(b) additions.
In other words, each time the construction
of b refers to a number y, use the number
ay instead.

M(33) < M(3) + M(11)

M@3) = 2 [12 3]
M(11)= 5 [12351011]

M(3) + M(11) = 7
M(33) = 6 [12 4816 32 33]

The conjecture of equality fails. There have
been many nice conjectures. . ..

More Corollaries
Corollary: M(a) < kM(a)
Corollary: M(p,°1p,*2ps™3...p, ")
< oa;M(py) + aM(p,) +...+ a,M(p,)

Does equality hold?

Conjecture: M(2n) = M(n) +1
(A. Goulard)

A fastest way to an even number is to make half that
number and then double it.

Proof given in 1895 by E. de Jonquieres in
L'Intermediere Des Mathematique
volume 2, page

Furthermore, there
are infinitely many
such examplgs
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Open Problem

Is there an n such that
M(2n) < M(n) ?

Conjecture

Each stage might as well consist of adding
the largest number so far to one of the
other numbers.

First Counter-example: 12509
[124816 17 32 64 128 256 512 1024
1041 2082 4164 8328 8345 12509]

Open Problem

Prove or disprove the Scholz-
Brauer Conjecture:

M(2r-1)<n-1+8B,

(The bound that follows from this
lecture is too weak: M(2"-1) < 2n - 1)

High Level Point

Don't underestimate “simple”
problems. Some "simple” é@
mysteries have endured for

thousand of years.

Study Bee

Egyptian Multiplication

Raising To A Power
Minimal Addition Chain
Bracketing: Lower and Upper Bounds

RQA [Repeated Squaring Algorithm]
RQA works for ANY binary operator

Abstract away the inessential
features of a problem or solution

o0 Try out a problem or
= solution on small examples.
~— 000
- o4 o o
£ o% f
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