Andrew login ID:
Full Name:

CS15-213, Fall 2003

Exam 2
November 18, 2003
Instructions:
e Make sure that your exam is not missing any sheets, then yatuefull name and Andrew login ID

on the front.

e Write your answers in the space provided below the probldmigou make a mess, clearly indicate
your final answer.

e The exam has a maximum score of 66 points.

e The problems are of varying difficulty. The point value of e@coblem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

e This exam is OPEN BOOK. You may use any books or notes you Yka.may use a calculator, but
no laptops or other wireless devices. Good luck!

1 (10):

2 (10):

3(12):

4 (11);

5 (09):

6 (08):

7 (06):

TOTAL (66):

Page 1 of 16

Problem 1. (10 points):

The following problem concerns basic cache lookups.

The memory is byte addressable.

Physical addresses are 13 bits wide.

Memory accesses are 1ebyte words (not 4-byte words).

The cache is 4-way set associative, with a 4-byte block $ide32 total lines.

In the following tablesall numbers are given in hexadecimal. Thelndexcolumn contains the set index
for each set of 4 lines. Th&agcolumns contain the tag value for each line. Theolumn contains the
valid bit for each line. Th&8ytes 0—Zolumns contain the data for each line, numbered leftghtrstarting
with byte 0 on the left.

The contents of the cache are as follows:

4-way Set Associative Cache
Index [| Tag V | Bytes0-3 [Tag V| Bytes0-3 [Tag V| Bytes0-3 [Tag V| Bytes 0-3
0 FO 1 ED 32 0A A2 8A 1 BF 80 1D FC 14 1 EF 09 86 2A BC O 25 44 6F 1A
1 oC 0 03 3E CD 38 A0 O 16 7B ED 5A 8A 1 8E 4C DF 18 E4 1 FB B7 12 02
2 8A 1 54 9E 1E FA B6 1 DC 81 B2 14 00 1 B6 1F 7B 44 74 0 10 F5 B8 2E
3 BE O 2F 7E 3D A8 c 1 27 95 A4 74 A4 0 07 11 6B D8 8A 1 C7 B7 AF 2
4 7E 1 32 21 1C 2C 8A 1 22 C2 DC 34 BE 1 BA DD 37 D8 DC 0 E7 A2 39 BA
5 98 0 | A9 76 2B EE 54 0 BC 91 D5 92 98 1 80 BA 9B F6 8A 1 48 16 81 OA
6 38 1 5D 4D F7 DA 82 1 69 C2 8C 74 8A 1 | AB CE 7F DA 3E 1 FA 93 EB 48
7 8A 1 04 2A 32 6A 9E O B1 86 56 OE CC 1 96 30 47 F2 06 1 F8 1D 42 30
Part 1

The box below shows the format of a physical address.
would be used to determine the following:

CO The block offset within the cache line
Cl The cache index
CT The cache tag

12 11 10

9 8

Ingliat labeling the diagram) the fields that

Page 2 of 16

Part 2

For the given physical address, indicate the cache entgsaed and the cache byte value returimelaex.
Indicate whether a cache miss occurs. If there is a cache emtar “-” for “Cache Byte returned”.

Physical address: 0x1314
Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 O

Physical memory reference

\ Parameter \ Value\

Cache Offset (CO) | Ox
Cache Index (CI) (0)'
Cache Tag (CT) (0)'
Cache Hit? (Y/N)
Cache Byte returned 0x

Physical address: 0x08DF
Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 O

Physical memory reference

| Parameter | Value |

Cache Offset (CO) | Ox
Cache Index (CI) Ox
Cache Tag (CT) Ox
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 3 of 16

Part 3

For the given contents of the cache, list all of the hex plajsitemory addresses that will hit in Set 3. To
save space, you should express contiguous addresses agea Fam example, you would write the four
addresse®x1314,0x1315,0x1316,0x1317 asO0x1314- - 0x1317.

Answer:

The following templates are provided as scratch space:

12 11 10 9 8 7 6 5 4 3 2 1 0
.t rrrrr
12 11 10 9 8 7 6 5 4 3 2 1 0
.t rrrrr]

12 11 10 9 8 7 6 5 4 3 2 1 O

Part 4

For the given contents of the cache, what is the probabgixpiessed as a percentage) of a cache hit when
the physical memory address ranges betw@ehl140 - Ox115F. Assume that all addresses are equally
likely to be referenced.

Probability = %

The following templates are provided as scratch space:

12 11 10 9 8 7 6 5 4 3 2 1 0
.t rrrrr]
12 11 10 9 8 7 6 5 4 3 2 1 0
.t rrrrr

12 11 10 9 8 7 6 5 4 3 2 1 O

Page 4 of 16

Problem 2. (10 points):

The following problem concerns the way virtual addressedranslated into physical addresses.

¢ The memory is byte addressable.
¢ Memory accesses are to 4-byte words.

e Virtual addresses are 22 bits wide.

Physical addresses are 18 bits wide.
e The page size is 2048 bytes.

e The TLB is 2-way set associative with 16 total entries.

In the following tablesall numbersare given in hexadecimal. The contents of the TLB and the page table
for the first 32 pages are as follows:

TLB Page Table
Index| Tag PPN Valid [VPN PPN Valid VPN PPN Vaiid
0 [003 EB 1 00 37 1] 10 16 0

007 46 0 0L 58 1|11 37 0
1 o028 D3 1 02 19 1|12 28 0
001 2F 0 03 2A 1|13 53 0
2 031 EO0 1 04 56 0|14 1D O
012 D3 0 05 33 0|15 4A 1
3 [oor sC o 06 61 0|16 49 0
0B DI 1 07 28 0|17 26 0
4 | 02A BA 0 08 42 0|18 0C 1
011 F1L 0 09 63 0|19 04 1
5 [01F 18 1 0OA 31 1 [1A 1F 0
002 4A 1 0B 5C 0 |1B 22 1
6 | 007 63 1 0C 5A 1 |1C 40 O
03F AF 0 ob 2D 0 |1D OE 1
7 [010 ob 0 OE 4E O |1E 35 1
032 10 0 OF 1D 1 1F 03 1

Page 5 of 16

A. Partl

(@) The box below shows the format of a virtual address. hidi¢by labeling the diagram) the
fields (if they exist) that would be used to determine theofsihg: (If a field doesn’t exist, don't
draw it on the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index

TLBT The TLBtag

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

(b) The box below shows the format of a physical address.cétdi(by labeling the diagram) the
fields that would be used to determine the following:
PPO The physical page offset
PPN The physical page number

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Page 6 of 16

. Part2

For the given virtual addresses, indicate the TLB entry s&eg and the physical address. Indicate
whether the TLB misses and whether a page fault occurs.

If there is a page fault, enter “-” for “PPN” and leave part @nk.
Virtual address: 0XO05EEC

(a) Virtual address format (one bit per box)

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

(b) Address translation

| Parameter | Value |
VPN 0x
TLB Index Ox
TLB Tag Ox

TLB Hit? (Y/N)
Page Fault? (Y/N
PPN (0%

(c) Physical address format (one bit per box)
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Virtual address; 0OXO0AF9D

(a) Virtual address format (one bit per box)

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2

(b) Address translation

| Parameter | Value |
VPN 0Ox
TLB Index Ox
TLB Tag Ox

TLB Hit? (Y/N)
Page Fault? (Y/N
PPN 0x

(c) Physical address format (one bit per box)
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Page 7 of 16

Problem 3. (12 points):

This problem tests your understanding of basic cache apesatHarry Q. Bovik has written the mother of

all game-of-life programs. The Game-of-life is a computamg that was originally described by John H.
Conway in the April 1970 issue of Scientific American. The gasiplayed on a 2 dimensional array of

cells that can either be alive (= has value 1) or dead (= hag\@l Each cell is surrounded by 8 neighbors.
If a life cell is surrounded by 2 or 3 life cells, it survivesthext generation, otherwise it dies. If a dead cell
is surrounded by exactly 3 neighbors, it will be born in thetrgeneration.

Harry uses a very, very largi¥ x N array ofi nt's, whereN is an integral power of 2. It is so large that
you don’t need to worry about any boundary conditions. Timeiroop uses two int-pointers-c anddst
that scan the cell array. There are two arrays:is scanning the current generation whilg is writing the
next generation. Thus Harry’s inner loop looks like this:

int *src, *dst;
{ int n;

/* Count |ife neigbors */

n =src[1 1;
n +=src[1 - N;
n += src| - N
n += src[-1 - N;
n += src[-1 1;
n += src[-1 + N;
n += src| N ;
n +=src[1 + N;

/* update the next generation */
*dst = (((*src '=0) & (n == 2)) || (n==3)) ?21: O

dst ++;
Src++;

You should assume that the pointerg anddst are kept in registers and that the counter varialikalso in
a register. Furthermore, Harry’s machine is fairly old asdaia write-through cache with no-write-allocate
policy. Therefore, you daot need to worry about the write operation for the next genenati

Each cache line on Harry’s machine holds 4 int's (16 Byted)e Tache size is 16 KBytes, which is too
small to hold even one row of Harry’s game of life arrays. Hieach row hagV elements, wherdV is a
power of 2.

Page 8 of 16

Figure 1 shows how Harry’s program is scanning the gameeélifay. The thick vertical bars represent the
boundaries of cache lines: four consecutive horizontahiszgiare one cache line. A neighborhood consists
of the 9 squares (cells) that are not marked with an X. Thdesmigy square is thient cell that is currently
pointed to bysrc.

The 2 neighborhoods shown in Figure 1 represent 2 succdssiggons (case A and B) through the inner
loop. Thesrc pointer is incremented one cell at a time and moves fromdefight in these pictures.

You shall mark each of the 9 squares those with either a 'H”bY éndicating if the corresponding memory
read operation hits (H) or misses (M) in the cache. Cellsadbatain an X do not belong to the neighborhood
that is being evaluated and you should not mark these.

Part 1

In this part, assume that the cache is organized as a dirgmiedacache. Please mark the left column in
Figure 1 with your answer. The right column may be used asdtrahile you reason about your answer.
We will grade the left column only.

Your Answer in this column Scratch / Spare column

XXX X| XX X|X]| XEX XEX| X X| XX X[X]| XEX
XX X[X[X]| XX XX X[X[X]| XX
XX X[X[X[XJX CaseA XX X[X[X]| XX
XX X[X[X]| XX XX X[X|X]| XX
XEX| X X| XX X[X]| XEX XEX| X X| XX X|X]| XEX
XEX| X X| XX X[X]| XEX XXX X| XX X|X]| XEX
X X[X X[X[XX X X| X X[X[XX
XEX| X X| X| XX CaseB XEX| X X[X[XX
XEX| X X[X[XX XEX| X X| X | XX
XXX X| XX X|X]| XEX XEX| X X| XX X[X]| XEX

Figure 1:Game of Life with a direct mapped cache

Page 9 of 16

Part 2

In this part, assume a 3-way, set-associative cache witH iast Recently Used replacement policy (LRU).
As in Part 1 of this question, please provide your answer brkimg the empty squares of the left column
in Figure 2 with your solution.

Your Answer in this column Scratch / Spare column

XXX X| XX X|X]| XEX XEX| X X| XX X[X]| XEX
XX X[X[X]| XX XX X[X[X]| XX
XX X[X[X[XJX CaseA XX X[X[X]| XX
XX X[X[X]| XX XX X[X|X]| XX
XEX| X X| XX X[X]| XEX XEX| X X| XX X|X]| XEX
XEX| X X| XX X[X]| XEX XXX X| XX X|X]| XEX
X X[X X[X[XX X X| X X[X[XX
XEX| X X| X| XX CaseB XEX| X X[X[XX
XEX| X X[X[XX XEX| X X| X | XX
XXX X| XX X|X]| XEX XEX| X X| XX X[X]| XEX

Figure 2:Game of Life with a set associative cache

Page 10 of 16

Problem 4. (11 points):

This problem requires you to analyze the behavior of theritowps from a simple linear algebra package.
The int-vectorX of length NV is added to all rows of th& x N int-matrix A:

1...

2 int XN = {0};

3 int ALNI[N = {0};

4 ...

5 | int i, j;

6 .

7 for (i =0; i <N i++) {
8 for (j =0; j <N j++) {
9 int t;

10 t =AIJ[]];

11 t += X[j];

12 ALTTLTT =t

13 }

14 }

15 .

16 }

X is allocated first and is directly followed by the matek In other words, the address &f[N] is the
address of4[0][0]. You may assume th& is aligned so tha¥ [0] maps to the first set of the cache.

Part 1

Assume a 1K byte direct-mapped cache with 16 byte blocksh Eat is 4 bytes long. You should assume
thats, j, andt are kept in registers and are not polluting the cache. Fumitie, you should ignore all
instruction fetches: you are only concerned with the dathea

Fill in the table below for the following problems size, eséting the miss-rate expressed as a percentage
of all load/store operations t& and A. For the percentage, 2 digits of precision suffices.

| N | Total # of memory refs to A and X # of misses to X| # of misses to A| Miss rate (in %)|

8

64

60

Page 11 of 16

Part 2

Consider lines 10-12 of the program. How can you rewrite plig of the loop to improve performance?

Part 3

A Victim-Cache (VC) is a small extra cache that is used faedithat are evicted from the main cache. VC’s
tend to be small and fully associative. On a read, the procés$ooking up the victim cache and the main
cache in parallel. If there is a hit in the victim cache, telis transferred back to the main cache and the
line from the main cache is now stored in the VC (line swap).a@ache miss (both VC and main cache),
the data is fetched from memory and placed in the main cache.eVicted line is then copied to the VC.
Assume that this machine has a 1-line victim cache. Whageisrtiss rate of this system fo¥ = 64 ?

Miss rate = %

Page 12 of 16

Problem 5. (9 points):

This problem tests your understanding of memory bugs. Ebtttecode sequences below may or may not
contain memory bugs. The code all compiles without warnorgarrors. If you think there is a bug, please
circle YES and indicate the type of bug from the list below of memory bu@therwise, if you think there
are no memory bugs in the code, please ciiN@

Bugs:
. Potential buffer overflow error
. Memory leak

. Potential for dereferencing a bad pointer

. Incorrect use of realloc

1
2
3
4. Incorrect use of free
5
6. Misaligned access to memory
7

. Other memory bug

Part A

/*
* strndup - An attenpt to wite a safe version of strdup
*
* Note: For this problem assunme that if the function returns a
* non-NULL pointer to dest, then the caller eventually frees the dest buffer.
*/
char *strndup(char *src, int nmax)

{
char *dest;
int i;
if (I'src || max <= 0)
return NULL,;
dest = mal |l oc(max+1);
for (i=0; i < max && src[i] 1= 0; i++)
dest[i] = src[i];
dest[i] = 0;
return dest;
}
NO YES Type of bug:

Page 13 of 16

Part B

/* Note: For this problem asssune that if the function returns a non-NULL

* pointer to node, then the caller eventually frees node. */
struct Node {

i nt data;

struct Node *next;

}s

struct List {
struct Node *head;

b
struct Node *push(struct List *list, int data)
{
struct Node *node = (struct Node *)mall oc(sizeof (struct Node));
if (!(list & node))
return NULL;
node- >data = data
node- >next = |i st->head;
i st->head = node;
return node;
}
NO YES Type of bug:
Part C

/* print_shortest - prints the shortest of two strings */
void print_shortest(char *strl1, char *str2)

{
printf("The shortest string is %\n", shortest(strl, str2));
}
char *shortest(char *strl, char *str2)
{
char *equal = "equal";
int lenl = strlen(strl);
int len2 = strlen(str2);
if (lenl == len2)
return equal
el se
return (lenl < len2 ? strl : str2);
}
NO YES Type of bug:

Page 14 of 16

Problem 6. (8 points):

This problem tests your understanding of Unix process obntConsider the following C program. (For
space reasons, we are not checking error return codes,lsn@ssat all functions return normally.)

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/wait.h>
#i ncl ude <sys/types. h>

int main()

{ -
i nt status;
int counter = 2;
pid t pid;

if ((pid=fork()) == 0) {
counter += !fork();
printf("%l", counter);
fflush(stdout);

count er ++;
}
el se {
if (waitpid(pid, &status, 0) > 0) {
printf("6");
fflush(stdout);
}
counter += 2,
}

printf("%l", counter);
fflush(stdout);
exit(0);

For each of the following strings, circle whether (Y) or nid) ¢his string is a possible output of the program.

A. 264343 Y N
B. 236434 Y N
C. 243643 Y N

How many possible strings start with 234... ? (Give only thenher of strings.)

Answer =

Page 15 of 16

Problem 7. (6 points):

Suppose the filé 0o. t xt contains the textywei xtr”, bar. t xt contains the textdunazvs”, and
baz. t xt does not yet exist. Examine the following C code, and anshetwo questions below. (For
space reasons, we are not checking error return codes,so@dsat all functions return normally.)

int main() {
int fdl, fd2, fd3, fd4, status;

pid_t pid;

char c;

fdl = open("foo.txt", O RDONLY, 0)

fd2 = open("foo.txt", O RDONLY, 0)

fd3 = open("bar.txt", O RDONLY, 0)

fd4 = open("baz.txt", O WRONLY | O CREAT, DEF_MODE); /* r/lw */

dup2(fd4, STDOUT_FI LENO);

if ((pid=fork()) ==0) {
dup2(fd3, fd2);
dup2(STDOUT_FI LENO, fd4);
read(fdl, &c, 1);
printf("%", c);
read(fd2, &c, 1);
printf("%", c);
read(fd3, &c, 1);
printf("%", c);
printf("\n");
exit(0);

}

wai t pid(pid, &status, 0);
read(fdl, &c, 1);
printf("%", c);
read(fd2, &c, 1);
printf("%", c);
read(fd3, &c, 1);
printf("%", c);
printf("\n");

return O;

A. What will the contents obaz. t xt be after the program completes?
B. What will be printed orst dout ?

A. Contents of baz.txt: B. Printed on stdout:

Page 16 of 16

