
Sequential Web Proxy

L7 Proxy

• Concurrency (next recitation)
• Step-by-step:

– Implement sequential web proxy first

Echo

Client

process

Echo

Server

process

Echo

proxy

process

Web

Browser

process

Web

Server

process

Web

proxy

process

Outline

• What information to parse from the
HTTP headers

• What headers to suppress
• How to do data transfer

– Browser -> Proxy -> Web Server
• Testing

HTTP Request

GET http://csapp.cs.cmu.edu/simple.html HTTP/1.1
Host: csapp.cs.cmu.edu
User-Agent: Mozilla/5.0 ...
Accept: text/xml,application/xml ...
Accept-Language: en-us,en;q=0.5 ...
Accept-Encoding: gzip,deflate ...

Request Type Path Host Version

An empty line (“\r\n”) terminates a request.

What Headers to Parse

• First line of the HTTP request
– Complete URL

• Extract the URI for server HTTP request
– Version

• Change to HTTP 1.0 in the server request
– Hostname

• Needed for the Host: field in the server
request

– Port
• Proxy needs to know the port of the server

Web proxy in Lab 7

Web

Browser

process

Web

Server

process

Web

proxy

process

GET http://www.cmu.edu:80/index.html HTTP/1.0
<other information>

Connects to the target web server, sends request looking like this:
GET /index.html HTTP/1.0
<other information in the original request>
Lab 7 things to-do:
parse HTTP request (1st line): extract hostname & port number
port is not necessarily specified in the request if the default
number is used (80)

What Headers to Suppress

•  Connection/Proxy-Connection
–  Change the field to close

•  Keep-Alive
–  Remove the header

•  Keep the rest

•  Send an HTTP request to the server

HTTP Response

HTTP/1.1 200 OK
Date: Mon, 20 Nov 2006 03:34:17 GMT
Server: Apache/1.3.19 (Unix) …
Last-Modified: Mon, 28 Nov 2005 23:31:35 GMT
Content-Length: 129
Connection: Keep-Alive
Content-Type: text/html

Status

Status indicates whether it was successful or not, if it is a “redirect”, etc.

Send the complete response back to the client.

How to Do Data Transfer

• Handle Broken Pipes

• Use Rio package

•  strcpy() Vs memcpy()

Broken pipe error
•  When writing to a socket whose connection has been

closed prematurely at the other end
–  e.g. click “stop” on web browser

•  For the first write, return normally. For subsequent
writes
–  Kernel sends SIGPIPE signal, which terminates

process by default
–  If SIGPIPE is blocked or caught, return -1 & set

EPIPE.
•  When reading from a socket whose connection has been

closed
–  read returns a -1 with errno set to ECONNRESET

Handling Errors Gracefully

• We don’t want to terminate the web
proxy
– Close the connection
– Optionally, print an error message

Handling Client HTTP Request

• Use rio_readlineb to read the request
– Consider the different return values

• <0, 0, >0
– “\r\n” signals end of the request

•  rio_writen to send the request to the
server

Handling Server HTTP Response

•  rio_readnb to read the server response
– binary data
– strcpy Vs memcpy

•  rio_writen to send the response to the
client/browser

Testing Your Proxy

• Test the proxy on a variety of pages.

• Test the list given in the lab hand out.

• Test for both static and dynamic
content.

• Test binary (e.g., images) file transfers.

