
15-213 Malloc Recitation

Allocate The Right Amount of Space
Which of these are correct, incorrect, or incorrect

but will still behave as expected?

  int *x = malloc(sizeof(int *));
  int *x = malloc(sizeof(int));
  int *x = malloc(sizeof(x));
  int *x = malloc(sizeof(*x));
  char *orig = “some string”;

-  char *copy = malloc(orig);
-  char *copy = malloc(strlen(orig));
-  char *copy = malloc(strlen(orig + 1));
-  char *copy = malloc(strlen(orig) + 1);

  struct player {
 int health;
 char name[4];
}

  struct player *p = malloc(sizeof(struct player *));
  struct player *p = malloc(sizeof(struct player));

What's wrong with this code?
#define SUCCESS 0
#define ERROR (-1) ‏

typedef struct {
 char *name;
 unsigned age;
 double height;
} person_t;

int person_init(person_t *p) {
 p = malloc(sizeof(person_t));
 p->name = NULL;
 p->age = 18;
 p->height = 5.5;
 return SUCCESS;
}

What's wrong with this code?

person_t *new_person() {
 person_t *p = malloc(sizeof(person_t));
 if (person_init(p) != SUCCESS) {
 return NULL;
 }
 return p;
}

What's wrong with this code?

static person_t *people;

int init_people(int n) {
 people = malloc(sizeof(person_t) * n);
 if (!people) ‏
 return ERROR;
 for (int i = 0; i < n; i++) ‏
 person_init(&people[i]);
 return SUCCESS;
}

int clear_person(int i) {
 return person_init(&people[i]);
}

What's wrong with this code?

int main() {
 pid_t pid;
 if ((pid = fork()) != 0) {
 int *status;
 waitpid(pid, status, 0);
 printf(“Child %d is done!\n”, pid);
 } else {
 //Really long computation
 }
 return 0;
}

What's wrong with this code?
int main() {
 int *counts = malloc(MAX * sizeof(int));
 while (1) {
 int n;
 printf("Enter a number:\n");
 scanf("%d", &n);
 if (n >= 0 && n < MAX) {
 counts[n]++;
 } else if (n == -1) {
 break;
 }
 }
 int i;
 for (i = 0; i < MAX; i++) {
 printf("%d appeared %d times\n", i, counts[i]);
 }
 return 0;
}

Things to Remember

  Allocate the right amount of space: if you are allocating
something to put in a “person *”, allocate sizeof(person),
etc...

  When a function takes in a pointer to an object, it's wrong to
allocate space for that object inside the function.

  ALWAYS check the return value of malloc.
  You should call free() on every pointer you get back from

malloc exactly one, once you're done using it.
  Don't overstep your bounds.
  Pointers don't magically point to something, you have to

allocate space for an object to point to.
  malloc() doesn't initialize the returned memory – use calloc()

if appropriate. See the (m|c|re)alloc manpages for exact
behavior.

Macros in C

  A macro is a code fragment that has been
given a name

  The preprocessor will go through your source
and replace every occurrence of that name
with the fragment of code

  Macros can make your code cleaner, and yet
not incur the overhead of a function call

  How (not) to use macros…

What’s wrong here?

#define twice(x) 2 * x

twice(x + 1) = 2x + 2?

#define twice(x) x + x
#define min(X, Y) ((X) < (Y) ? (X) : (Y))

twice(x++) = 2x?
min(a, b++)?
min(foo(a), foo(b))?

What’s wrong here?

#define debug_printf(is_debug, str) \
 if (is_debug) printf("%s\n", str)

if (x < 0) debug_printf(debug_on, “Negative
input”);

else debug_printf(debug_on, “Non-negative
input”);

if (x < 0)
 if (debugon) printf("%s\n", "Negative
input");

 else if (debugon) printf("%s\n", "OK
input");

“OK input” never prints!

Things to Remember

  Surround names in macros with parentheses
  Don’t pass code with side effects to macros (you have no

idea how many times they’re evaluated)
  Try not to evaluate macro arguments more than once in your

macros
  When using macros in conditionals, put braces around them

