Concurrent HTTP
Proxy with Caching

Course Logistics

>

>

>

This is the last recitation.
Final Exam
« Coming soon, start studying.

« Comprehensive, slightly focused on recent
material.

= Review old exams from the course website.
Final Review Session - Thursday
« The lecture will be led by you.
« Send us good questions.

= Please review subject x" is not a good
question!

Go to office hours this week
« Schedule one-on-one meetings.

ProxyLab Logistics

» Due Thursday, drop-dead date is Saturday
» Late Days: minimum of both partners
» Make sure both partners hand in code

» lest your proxy well
= You may share testing ideas with classmates
« But not testing code

Outline

» Threads
= Review of the lecture

» Synchronization
« Using semaphores; preview of Tue. lecture

» Caching in the proxy

» [TA Evaluation Forms

Concurrent Servers

» Iterative servers can only serve one client at
a time

» Concurrent servers handle multiple requests

in parallel
Web Web
Browser Server
Web
Server

Web
Browser

Web
Browser

Implementing Concurrency

1. Processes

« Fork a child process for every incoming client
connection

Difficu I | hild

2. Threads

« Create a thread to handle every incoming client
connection

« Our focus today

3. I/O multiplexing with Unix select ()
« Use select () to notice pending socket activity

« Manually interleave the processing of multiple open
connections

« More complex!
» ~ implement your own app-specific thread package!

A process with Multiple Threads

» Multiple threads can be associated with a process
« Each thread has its own logical control flow (instruction flow)
« Each thread shares the same code, data, and kernel context

« Each thread has its own thread ID (TID)

Thread 1
(main thread)

stack 1

Thread 1 context:
Data registers
Condition codes
SP1
PC1

Shared code and data

shared libraries

run-time heap
read/write data
read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

Thread 2
(peer thread)

stack 2

Thread 2 context:
Data registers
Condition codes
SP2
PC2

Threads vs. Processes

» How threads and processes are similar
« Each has its own logical control flow.
« Each can run concurrently.
« Each is context switched.

» How threads and processes are different
« Threads share code and data, processes (typically) do not.
« Threads are less expensive than processes.

+ Process control (creating and reaping) is twice as
expensive as thread control.

+» Linux/Pentium III numbers:
» ~20K cycles to create and reap a process.
» ~10K cycles to create and reap a thread.

Posix Threads (pthreads)

» Creating and reaping threads
« pthread create

« pthread join
« pthread detach

» Determining your thread ID
« pthread self

» Terminating threads
« pthread cancel
« pthread exit
» exit [terminates all threads]
« return [terminates current thread]

Hello World, with pthreads

/*

* hello.c - Pthreads "hello, world" program
*/

#include "csapp.h" Thread attributes
_~1 (usually NULL)
void *thread(void *vargp) ;
int main() { Thread arguments
pthread t tid;] (void *p)

}

/* thread routine */
void *thread(void *vargp) {

/

Pthread create(&tid, NULL, thread, NULL) ;
Pthread join(tid, NULL) ;

return value
(void **p)

printf ("Hello, world!'\n");
return NULL;

Upper case
Pthread xxx
checks errors

10

Hello World, with pthreads

main thread

call Pthread_create()
Pthread_create() returns

call Pthread_join() | Tt

main thread] printf()
waits for peer :

return NULL;
thread to terminate

................................. (peer threac

. terminates)
Pthread_join() returns

exit ()
terminates

main thread and

any peer threads

@

11

Thread-based Echo Server

int main(int argc, char **argv)

{

int listenfd, *connfdp, port, clientlen;
struct sockaddr in clientaddr;
pthread t tid;

if (argc '= 2) {
fprintf (stderr, "usage: %s <port>\n", argv|[0]);
exit (0) ;

}

port = atoi(argv[l]);

listenfd = open listenfd(port);
while (1) {
clientlen = sizeof(clientaddr) ;

connfdp = Malloc(sizeof (int)) ;

*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen) ;

Pthread create(&tid, NULL, thread, connfdp)

12

Thread-based Echo Server

/* thread routine */
void *thread(void *vargp)

{
int connfd = *((int *)vargp) ‘?

Pthread detach(pthread self());
Free (vargp) ;

echo r(connfd); /* thread-safe version of echo() */
Close (connfd) ;
return NULL;

pthread detach () is recommended in the proxy lab

13

Issue 1: Detached Threads

A thread is either joinable or detached
» Joinable thread can be reaped or killed by other threads.
= must be reaped (pthread join) to free resources.

» Detached thread can’t be reaped or killed by other
threads.

= resources are automatically reaped on termination.

» Default state is joinable.
« pthread detach(pthread self()) to ma ke detached.

» Why should we use detached threads?
= pthread join() blocks the calling thread

14

Issue 2: Avoid Unintended Sharing

connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen) ;
Pthread create(&tid, NULL, thread, connfdp);

» What happens if we pass the address of connfd to
the thread routine as in the following code?

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen) ;
Pthread create(&tid, NULL, thread, (void *) &connfd) ;

15

Issue 3: Thread-Safe

» Easy to share data structures between
threads

= But we need to do this correctly!

» Recall the shell lab:

= JOb data structures

« Shared between main process and signal
handler

» Synchronize multiple control flows

16

Synchronizing with Semaphores

» Semaphores are counters for resources
shared between threads

« Non-negative integer synchronization variable

» WO operations: P(s) & V(s)
« Atomic operations
« P(s): [while (s == 0) wait(); s--;]
-V(S): [s++;]

» If initial value of s ==
s Serves as a mutual exclusive lock

Just a very brief description

Detalls in the next lecture
17

Sharing with POSIX

Semaphores

#include "csapp.h"
#define NITERS 1000

unsigned int cnt; /* counter */
sem t sem; /* semaphore */

int main() {
pthread t tidl, tid2;

Sem init(&sem, 0, 1);

/* create 2 threads and wait */

exit (0) ;

/* thread routine */
void *count (void *arg)

{

int i;

for (i=0;i<NITERS;i++) {
P(&sem) ;
cnt++;
V(&sem) ;

}
return NULL;

18

Thread-safety of Library Functions

» All functions in the Standard C Library are thread-safe
« Examples: malloc, free, printf, scanf

» Most Unix system calls are thread-safe
= With a few exceptions:

Thread-unsafe function Reentrant version
asctime asctime r

ctime ctime r
gethostbyaddr gethostbyaddr r
gethostbyname gethostbyname r
inet ntoa (none)
localtime localtime r
rand rand r

19

Thread-unsafe Functions: Fixes

» Return a ptr to a static variable

struct hostent

*gethostbyname (char *name)

{
static struct hostent h;
<contact DNS and fill in h>
return &h;

» Fixes:
1. Rewrite code so caller passes pointer to struct

+ Issue: Requires changes in caller and callee

hostp = Malloc(...));
' gethostbyname r (name, hostp, ..);

20

Thread-unsafe Functions: Fixes

2. Lock-and-copy
+» Issue: Requires only simple changes in caller
+» However, caller must free memory

struct hostent
*gethostbyname ts(char *name)
{
struct hostent *p;
struct hostent *q = Malloc(...);
P(&mutex); /* lock */
p = gethostbyname (name) ;
*q = *p; /* copy */
V (&mutex) ;
return q;

21

Common Hazards

Don't hold a lock while making a system call.
Don't hold a lock when you decide to kill a thread.

Don't protect huge, complicated blocks of code with a
mutex. Limit the amount of code that's protected: this
reduces contention and improves performance.

Be very, very careful to only lock when you DON'T
have the mutex, and only unlock when you DO.

22

Caching

» What should you cache?
« Complete HTTP response
» Including headers
« You don’t need to parse the response
+ But real proxies do. Why?

» If size(response) > MAX_OBIJECT_SIZE, don't
cache

Cache Replacement

» Least Recently Used (LRU)

« Evict the cache entry whose “access”
timestamp is farthest into the past

» When to evict?
« When you have no space!
« Size(cache) + size(new_entry)
> MAX_CACHE_SIZE

« What is Size (cache)?
« Sum of size (cache_entries)

24

Cache Synchronization

» A single cache is shared by all proxy threads
« Must carefully control access to the cache

» What operations should be locked?
» add cache entry
» remove cache entry
» lookup cache entry

» Remember:

« Multiple readers can peacefully co-exist

« But if a writer arrives, that thread MUST
synchronize access with others

25

Summary

Threading is a clean and efficient way to implement
concurrent server

We need to synchronize multiple threads for concurrent
accesses to shared variables

= Semaphore is one way to do this
= Thread-safety is the difficult part of thread programming

Common Symptoms of Concurrency Problems

= If proxy hangs forever, you're probably forgetting to
unlock somewhere

= IF cache is getting corrupted and returning bad objects,
you're probably forgetting to lock somewhere

26

TA Evaluation Form

» Questions on both sides
» Any comments are highly appreciated!

Thank you!

27

