
Coding, a 213 approach
Before you Start
 - go to classes
 - go to recitation
 - read the textbook
 - before the lecture, or no later than 24 hrs afterwards
 - if you miss any, go over the lecture slides with a classmate

 Print out Assignment/Specification
 -!!!we mean it!!!
 -you can annotate it

Gathering Information

 Read handout once
 -also re-read relevant parts of textbook

 Read handout again
 -what functionality will you need?
 -put boxes around the things you don't understand
 -look for over arching concerns (is runtime really important? source
size? etc)
 -what are you *not* allowed to do?
 -write down your questions on the printout

 Read given code/existing code (if applicable)
 -don’t reinvent the wheel.
 -note (on your print out) things you need to know to use provided
code.
 -*if* there is testing code provided, pay particular attention to
what it *doesn’t* cover

 Make a checklist of what your code needs to do
 -what support code will you need?
 -what is being asked?
 -what can happen out of order?

 Sketch out a design for your program
 -try to turn your checklist into pseudo-code outline
 -what data structures/algorithms could help?
 -what are the drawbacks?
 -Ockham's/Occam's razor

 Make an outline of your Testing Plan
 -what tools can help you
 -debuggers
 -what debugger features will you use
 -what test code will you write?
 -what race conditions are likely to show up
 -and how will you know?

 Write down some execution stories
 - For example:
 1. The user types "/bin/sleep 10 &".
 2. The shell forks.

 3. The child ...
 4. The shell ...
 5. Eventually, ...
 6. The shell ...
 - Using your outlines, will your code agree with the story?

 Read your Assignment again
 -does your pseudo code outline violate spec?
 -does your testing plan violate any policies?

 Repeat Steps as Necessary

Programming/Debugging

 If you get stuck
 - bring your outlines, printout, & checklist to a TA
 - go back to your stories, using debugging, where does your code
diverge from your story
 - Course staff can help you best with specific, describable
problems, but cannot write code for you or debug 'It just doesn't
work'
 - emphasis on “describable”
 - the more documentation you have on your bug, the better it will be

 Write your code and test code together
 - not in the same file, but similar times

 comment your code as you go
 - so you know what you were thinking when you work on it again

Before Turning Project in
 review code/comments
 - remove inane, old, or useless comments
 - make sure all functions have block comments at the top explaining
what they do, and special algorithms, etc

 document any standing bugs
 - TAs reserve the right to be lenient if we can see you were on the
right track

