
Andrew login ID:

Full Name:

15-213, Fall 2007

Final Exam
December 13, 2007, 1:00pm-4:00pm

• Make sure that your exam is not missing any sheets. Write yourfull name and Andrew login ID on the front.

• Write your answers in the space below each problem. If you make a mess, clearly indicate your final answer.

• The point value of each problem and the total possible is indicated below.

• The problems are of varying difficulty. Pile up the easy points quickly and then go back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like.Calculators are allowed, but no other
electronic devices (including cell phones). Electronic communication is strictly forbidden. Good luck!

Do not write below this line
——————————-

Problem Possible Points Your Score

1 16

2 12

3 9

4 9

5 12

6 12

7 20

8 12

9 12

10 13

Total 127

Page 1 of 18

Problem 1. (16 points):

Consider the following 8-bit floating point representations based on the IEEE-754 format.

Format A:

• There is one sign bit.

• There arek = 3 exponent bits. The exponent bias is 3.

• There aren = 4 fraction bits.

Format B:

• There is one sign bit.

• There arek = 4 exponent bits. The exponent bias is 7.

• There aren = 3 fraction bits.

The rules are like those in the IEEE standard (normalized, denormalized, representation, infinity, and NAN).

Part I

A. Let XA be the largest, finite, positive value that can be represented in Format A, and letXB be the largest,
finite, positive value that can be represented in Format B.

(a) What is the encoding ofXA in Format A? Express your answer as a sequence of 8 bits.

(b) Circle the correct relationship betweenXA andXB .

XA < XB XA == XB XA > XB

B. Let YA be the largest, finite,negativevalue that can be represented in Format A, and letYB be the largest,
finite, negativevalue that can be represented in Format B.

(a) What is the encoding ofYB in Format B? Express your answer as a sequence of 8 bits.

(b) Circle the correct relationship betweenYA andYB . Remember that YA and YB are both negative.

YA < YB YA == YB YA > YB

Page 2 of 18

Part II

Please complete the table below as follows. For a given format in a given row, the bit representation and value
fields should correspond exactly to each other. For Format B in the last four rows of the table (where neither the bit
representation nor the value are specified for that format),you should indicate:

• the bit representationthat is closest (including any rounding if necessary) to thevalue for Format A in that
same row;

• thevaluethat corresponds exactly to the bit representation that youenter for Format B (which may or may not
be equal to the value for Format A in the same row).

If rounding is necessary, you should use the round to even scheme that is the default in the IEEE format. For the
value fields, you can give the values either as fractions (e.g., 17

64
, 7

2
), mixed numbers (e.g.,51

2
) or as an integer times

a power of 2 (e.g.,17 × 2
−6 or 7 × 2

−1).

Format A Format B

Bit Representation Value Bit Representation Value

1 011 1010 −13/8 1 0111 101 −13/8

0 101 0011

1 000 1100

12

3
1

4

Page 3 of 18

Problem 2. (12 points):
Dr. Evil has returned! He has placed a binary bomb in this exam! Once again, Dr. Evil has made the disastrous
mistake of leaving behind some of his source code. Can you save all of mankind (or at least your grade on this
question), and tell us what this bomb does?

The C source code Dr. Evil forgot to erase:

/* bomb.c: Use new computer technology to blow up exams! -- Dr. Evil */
#include <stdio.h>
#include <stdlib.h>

extern long secret_unsolvable_puzzle_fn(long input);

void explode_bomb() {
printf("You fail! Mwhahahahaha!!!\n");
exit(8);

}

int main(int argc,char *argv[]) {
if(argc != 2) {

printf("Usage: %s <magic password>\n", argv[0]);
explode_bomb();

}

if(secret_unsolvable_puzzle_fn(atol(argv[1])) == 0)
explode_bomb();

printf("Curses, foiled again! You get paid one MEEELLION DOLLARS!\n");
return 0;

}

The IA32 disassembly for the stuff Dr. Evil did erase:

secret_unsolvable_puzzle_fn:
80485c0: 55 pushl %ebp
80485c1: 89 e5 movl %esp,%ebp
80485c3: 8b 45 08 movl 0x8(%ebp),%eax
80485c6: 85 c0 testl %eax,%eax
80485c8: 74 1d je 80485e7
80485ca: 8d 14 00 leal (%eax,%eax,1),%edx
80485cd: 81 fa 42 53 00 cmpl $21314,%edx
80485d2: 00
80485d3: 77 0a ja 80485df
80485d5: 01 c2 addl %eax,%edx
80485d7: 81 fa 42 53 00 cmpl $21314,%edx
80485dc: 00
80485dd: 76 f6 jbe 80485d5
80485df: 81 fa 43 53 00 cmpl $21315,%edx
80485e4: 00
80485e5: 74 02 je 80485e9
80485e7: 31 c0 xorl %eax,%eax
80485e9: 89 ec movl %ebp,%esp
80485eb: 5d popl %ebp
80485ec: c3 ret

Page 4 of 18

A. Does the functionsecret_unsolvable_puzzle_fn() contain any of the following (circle eitheryes
or no):

loops: yes no

if statements: yes no

function calls: yes no

recursion: yes no

B. For each of the following input values, circle whether itdefusesor explodesthe bomb:

input = 0: defuses explodes

input = 1: defuses explodes

input = 7105: defuses explodes

input = 10657: defuses explodes

Page 5 of 18

Problem 3. (9 points):
This problem will test your understanding of the memory layout of C structures and unions in IA-32/Windows
assembly code. (Recall that in Windows, 8 byte primitive data types must be aligned upon 8-byte boundaries.)
Consider the data structure declarations below. (Note thatthis is a single declaration which includes several data
structures; they are shown horizontally to fit on the page.)

struct s1 {
struct s2 a;
struct s2 *b;
struct s1 *c;
double d;
int e[5];

};

struct s2 {
char i[7];
union u1 *j;
int k;

};

union u1 {
int f;
struct s1 g;
struct s2 *h;

};

For each of these four C procedures, fill in the missing offsets in the corresponding IA-32 assembly code immediately
below it. (If you give the wrong answer below but write the correct sizes next to the structures above, you might get
some partial credit.)

A. int proc1(struct s1 *x) {
return x->e[3];

}

proc1:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%eax
movl %ebp,%esp
popl %ebp
ret

B. int proc2(struct s2 *x) {
return x->j->g.e[1];

}

proc2:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%eax
movl (%eax),%eax
movl %ebp,%esp
popl %ebp
ret

C. int proc3(union u1 *x) {
return x->g.c->b->k;

}

proc3:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%eax
movl (%eax),%eax
movl (%eax),%eax
movl %ebp,%esp
popl %ebp
ret

D. int proc4(union u1 *x) {
return x->h->j->f;

}

proc4:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%eax
movl (%eax),%eax
movl (%eax),%eax
movl %ebp,%esp
popl %ebp
ret

Page 6 of 18

Problem 4. (9 points):

Consider the C code below:

int fdplay() {
int pid;
int fd1, fd2;

fd1 = open("/file1", O_RDWR);
dup2(fd1, 1);
printf("A");
if ((pid = fork()) == 0) {

printf("B");
fd2 = open("/file1", O_RDWR);
dup2(fd2, 1);
printf("C");
/* POINT X */

} else {
waitpid(pid, NULL, 0);
printf("D");
close(fd1);
printf("E");

}
exit(2);

}

A. How many processes share the open file structure referred to byfd1 at “POINT X” in the code?

B. How many file descriptors (total among all processes) share the open file structure referred to byfd1 at
“POINT X” in the code?

C. Assuming that/file1 was empty before running this code, what are its contents after the execution is
complete?

Page 7 of 18

Problem 5. (12 points):
3M decides to make Post-Its by printing yellow squares on white pieces of paper. As part of the printing process,
they need to set the CMYK (cyan, magenta, yellow, black) value for every point in the square. 3M hires you to
determine the efficiency of the following algorithms on a machine with a 2048-byte direct-mapped data cache with
32 byte blocks.
You are given the following definitions:

struct point_color {
int c;
int m;
int y;
int k;

};

struct point_color square[16][16];
register int i, j;

Assume:

• sizeof(int) = 4

• square begins at memory address 0

• The cache is initially empty.

• The only memory accesses are to the entries of the arraysquare. Variablesi andj are stored in registers.

A. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

square[i][j].c = 0;
square[i][j].m = 0;
square[i][j].y = 1;
square[i][j].k = 0;

}
}

Miss rate for writes tosquare: _______ %

Page 8 of 18

B. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

square[j][i].c = 0;
square[j][i].m = 0;
square[j][i].y = 1;
square[j][i].k = 0;

}
}

Miss rate for writes tosquare: _______ %

C. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

square[i][j].y = 1;
}

}
for (i=0; i<16; i++) {

for (j=0; j<16; j++) {
square[i][j].c = 0;
square[i][j].m = 0;
square[i][j].k = 0;

}
}

Miss rate for writes tosquare: _______ %

Page 9 of 18

Problem 6. (12 points):
This question focuses on the two-level page table structurethat IA-32/Linux machines use to translate virtual to
physical addresses. The layout of aPage Directory Entry(PDE) and aPage Table Entry(PTE) is shown below on
the left, and the contents of physical memory for this problem is shown below on the right:

31 12 11 2 1 0
Physical Base Address Ignore R/W P

Physical Base Address (bits 31-12): the 20 most significant bits
of either the physical PTE address (if this is a PDE), or the
physical page address (if this is a PTE). (Note that this forces
both page tables and pages to be 4KB aligned.) Note that if
this is a PDE, this address represents where the PTE starts; if
it is a PTE, then it represents where the physical page being
accessed starts.

Ignore (bits 11-2): not pertinent to this problem.

R/W (bit 1): 0 indicates that we have read-only permission for
either the PTE or the page, and1 indicates that we have
permission both to read and write.

P (bit 0): indicates whether the PTE (if this is a PDE) or the page
(if this is a PTE) is in physical memory;1 means that it is in
memory;0 means that it is not.

Physical Memory Contents
Physical Data
Address Value

0x000C8000 0x20000025
0x000C8004 0x08000025
0x000C8008 0x00100025
0x000C800c 0x20000001

...
0x00100000 0xAD34A645
0x00100004 0x12480007
0x00100008 0x001C0A05
0x0010000C 0x8BEEF407
0x00100010 0xBF072627

...
0x08000000 0x0002C003
0x08000004 0x01000C25
0x08000008 0x0FA00027
0x0800000C 0x824AF667

...
0x20000000 0x024C8C05
0x20000004 0x0A4F3407
0x20000008 0x023FD225
0x2000000C 0x198AAE27Assume the following:

• The page size is 4KB.

• All memory accesses are to 4-byte words (using byte addresses, as always).

• The first level of the page table begins at physical address0x000C8000 (i.e. this is the value of the “PDBR”
register in the Pentium III processor).

For the memory accesses on the next page, your mission is to answer the following two questions:

1. Does the access complete normally, or does it result in a fault? Note that there are multiple reasons why an
access may result in a fault. If you believe that a fault occurs, explain why.

2. What is the final 4-byte physical address that is accessed in the course of performing this access?If the
access completes normally, then this will simply be the physical address upon which the memory operation is
performed. If there is a fault, however, then this address will be a 4-byte word within the page table (note that
it may be either a PDE or a PTE).

To avoid excessive page turning, the addresses on the next page are:
0x00803CDC (write), 0x00000320 (read),0x00802127 (write), and0x00401478 (read).

Page 10 of 18

A. Write to virtual address 0x00803CDC.

Final physical address accessed:

Does a fault occur? (yes or no):

If yes, explain why:

B. Read from virtual address 0x00000320.

Final physical address accessed:

Does a fault occur? (yes or no):

If yes, explain why:

C. Write to virtual address 0x00802127.

Final physical address accessed:

Does a fault occur? (yes or no):

If yes, explain why:

D. Read from virtual address 0x00401478.

Final physical address accessed:

Does a fault occur? (yes or no):

If yes, explain why:

Page 11 of 18

Problem 7. (20 points):
In each of the following questions,one or moreof the possible answers is correct.Clearly indicate all of the
correct answers by writing their letter(s) in the blank at the end of each question.

A. Which of the following x86 instructions can be used to add two registers and store the result without overwrit-
ing either of the original values?

(a) mov

(b) add

(c) lea

(d) None of above

Correct answer(s):

B. The registerrax is currently storing a NULL pointer. Which of the following x86 instructions will cause a
segmentation fault because of an invalid memory access?

(a) mov (%rax), %rcx

(b) lea (%rax), %rcx

(c) None of the above

Correct answer(s):

C. In buflab, a buffer was allocated on the stack. When the userran the program and typed something in, it
was written into the buffer. If the user entered more characters than the buffer could fit, they could overwrite
additional values on the stack. Which of the following regions of the stack could they directly overwrite in
this manner?

(a) The part of the stack withhigher (i.e. larger) addresses than the buffer

(b) The part of the stack withlower (i.e. smaller) addresses than the buffer

Correct answer(s):

D. A function declares a local variable namedmy int of type int. Which of the following (if any) is/are
dangerous in C?

(a) Returning&my int

(b) Setting the value of a global variable to&my int

(c) Printing the address&my int to the screen

(d) None of the above

Correct answer(s):

Page 12 of 18

E. A programmer wishes to compare the contents of a string calledmy str to the string “GET”. He or she writes
the following C code:

if (my_str == "GET") ...

Which of the following apply?

(a) my str is a pointer to the first character of a string in memory

(b) my str is the ASCII value of the first character of a string in memory

(c) my str is a register containing all of the characters in the string

(d) “GET” will compile to a pointer to a string in memory

(e) “GET” will compile to the ASCII value for the letter ”G”

(f) “GET” will compile to a register containing the string “GET” represented as an integer

(g) The comparison will always work as expected

(h) The comparison will not necessarily work as expected

(i) The comparison itself will cause the program to crash

Correct answer(s):

F. The functionfoo() is declared in a C program as follows:

void foo(int int_param, char *str_param);

A programmer callsfoo() from within the functionbar() as follows:

foo(my_int, my_string);

Which of the following is/are true:

(a) If foo() changes the value ofint param, the change will propagate back to the calling function
bar(), in other words, the value ofmy int will also change.

(b) If foo() changes the second character ofstr param, the change will propagate back to the calling
functionbar(), in other words, the second character ofmy string will also change.

(c) If foo() changes the address ofstr param to point to a different string, the change will propagate
back to the calling functionbar(), in other words,my string will now point to a different string.

(d) None of the above.

Correct answer(s):

Page 13 of 18

G. A programmer has declared an array in a C program as follows:

int my_array[100];

Which of the following give(s) the address of the eighth element in the array (bearing in mind that the first
element in the array is at index zero):

(a) my array[7]

(b) &my array[7]

(c) my array + 7

(d) my array + 28

(e) None of the above

Correct answer(s):

H. A programmer has stored an 8-bit value in memory. The pointer:

char *ptr;

points to the location where it is stored. He or she now wants to retrieve the value and store it into the variable:

int value;

Which of the following (if any) will achieve this properly?

(a) value = ptr;

(b) value = *ptr;

(c) value = (int)ptr;

(d) value = (int *)ptr;

(e) value = *(int *)ptr;

(f) None of the above

Correct answer(s):

I. In malloclab, we provided code for an implicit list allocator. Many students improved this code by creating a
linked list of free blocks. Why did this increase the performance of the allocator?

(a) Traversing a linked list is significantly faster than moving from block to block in the implicit list.

(b) The implicit list had to include every block in memory, but the linked list could just include the free
blocks.

(c) The compiler knows how to optimize the code for a linked list by unrolling loops, but wasn’t able to do
this for the implicit list.

(d) Having a linked list made coalescing significantly faster.

(e) None of the above.

Correct answer(s):

Page 14 of 18

J. A multithreaded program has two global data structures that will be shared among the threads. The data
structures are not necessarily accessed at the same time. Which of the following is/are true (if any)?

(a) If the program has only one semaphore, and threads callP on that single semaphore before using either
of the data structures, the code will not work correctly.

(b) Having one semaphore will work, but having two, one per shared data structure, may allow for increased
performance.

(c) If the machine has only one processor, only one of the threads can run at a time, so semaphores are not
necessary in that case.

(d) None of the above.

Correct answer(s):

Page 15 of 18

Problem 8. (12 points):

Consider the C code below:

void handler (int sig) {
printf("s");
exit(7);

}

int forker(int x) {
int pid, status;

signal(SIGINT, handler);
printf("A");
if (x > 0) {

pid = fork();
printf("B");
if (pid == 0) {

printf("C");
} else {

kill(pid, SIGINT);
waitpid(pid, &status, 0);
printf("%d", WEXITSTATUS(status));

}
}
printf("E");
exit(4);

}

Consider each of the following outputs and circle the ones that could be produced by the code above (after all
processes are terminated).

ABBCE4E

ABs7E

ABCEsB4E

AB4EBCE

ABCBs7E

ABCEB4sE

Page 16 of 18

Problem 9. (12 points):

Consider the following three threads and four semaphores:

/* Initialize x */
x = 1;

/* Initialize semaphores */

s1 =

s2 =

s3 =

s4 =

void thread1()
{
while (x != 360) {

x = x * 2;

}
exit(0);

}

void thread2()
{

while (x != 360) {

x = x * 3;

}
exit(0);

}

void thread3()
{
while (x != 360) {

x = x * 5;

}
exit(0);

}

Provide initial values for the four semaphores and add P(), V() semaphore operations (using the four semaphores) in
the code for thread 1, 2 and 3 such that the process is guaranteed to terminate.

Page 17 of 18

Problem 10. (13 points):

A. Assume that we want to transmit over the network the contents of a structure of the following type. Circle the
structure elements that must be put in network byte order to guarantee that the recipient can interpret what it
receives correctly.

struct data {

int foo;

char name[16];

short bar;
};

B. Consider the following segment of network code:

fd = socket (AF_INET, SOCK_STREAM, 0)
...
connect (fd, &serveraddr, sizeof(serveraddr));
write (fd, data, N);
read (fd, buf, N);
...

(a) Assume that thesocket(), connect(), andwrite() calls return success. Is theread() call
guaranteed to return quickly?

(b) When theread() call returns, how many bytes ofbuf will have been modified? Indicate either a
value or a precise range of values (e.g., “betweenX andY ”). (Note that an answer of “between zero and
infinity” will not receive credit: you need to be precise.)

(c) Based on the code above, will the first byte ofbuf after theread() match the first byte ofdata?
(Your answer should be one of either “yes”, “no”, or “maybe”.)

C. How many unique socket connections could a web server thatlistens on a single port (e.g., port 80) and has a
single IP address have with clients at once? (Ignore possible limitations imposed by the operating system.)

D. How many concurrent socket connections could the same server have if it listens on all ports?

Page 18 of 18

