
Andrew login ID:

Full Name:

CS 15-213, Fall 2004

Exam 1
Tuesday October 12, 2004

Instructions:

� Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID
on the front.

� Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

� The exam has a maximum score of 70 points.

� The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

� This exam is OPEN BOOK. You may use any books or notes you like. No electronic devices are
allowed. Good luck!

1 (12):

2 (10):

3 (15):

4 (8):

5 (10):

6 (8):

7 (7):

TOTAL (70):

Page 1 of 15

Problem 1. (12 points):
Consider a 9-bit variant of the IEEE floating point format as follows:

� Sign bit

� 4-bit exponent with a bias of � �
.

� 4-bit significand

All of the rules for IEEE (normalized, denormalized, special numbers, etc.) apply.
Fill in the numeric value represented by the following bit patterns. Write your numbers in either fractional
form (e.g., ���������) or decimal form (e.g., ��	�
 ���).

Bit Pattern Numeric Value

1 0000 0000

0 0000 1111

1 0001 0001

0 1010 1010

1 1110 1111

0 1111 0000

Page 2 of 15

Problem 2. (10 points):
You are given the following C code to compute integer absolute value:

int abs(int x)
{
return x < 0 ? -x : x;

}

You’ve concerned, however, that mispredicted branches cause your machine to run slowly. So, knowing that
your machine uses a two’s complement representation, you try the following (recall that sizeof(int)
returns the number of bytes in an int):

int opt_abs(int x)
{
int mask = x >> (sizeof(int)*8-1);
int comp = x ˆ mask;
return comp;

}

A. What bit pattern does mask have, as a function of x?

B. What numeric value does mask have, as a function of x?

C. For what values of x do functions abs and opt abs return identical results?

D. For the cases where they produce different results, how are the two results related?

.

E. Show that with the addition of just one single arithmetic operation (any C operation is allowed) that
you can fix opt abs. Show your modifications on the original code.

F. Are there any values of x such that abs returns a value that is not greater than 0? Which value(s)?

Page 3 of 15

Problem 3. (15 points):
This question will test your ability to reconstruct C code from the assembled output. On the opposing page,
there is asm code for a routine called bunny. It comes from a C routine with the following outline.
Don’t fill in the outline yet.

static int bunny(int l, int r, int *A) �
int x = ;
int i = ;
int j = ;
while() �

do j--; while();
do i++; while();
if() �

int t = A[i];
A[i] = A[j];
A[j] = t;�

�
return ;�

A. (3 points): Fill in the following table of register usage. Use the variable names from the outline. If a
register gets used to store two different things, just list both of them. I’ve filled in two blanks to show
examples. This will help you understand the code; do this before part C.

Register Variable
%eax
%ebx
%ecx
%edx
%esi
%edi
%esp
%ebp

B. (3 points): Why does bunny push %edi, %esi, and %ebx on to the stack?

Page 4 of 15

bunny:
pushl %ebp
movl %esp, %ebp
pushl %edi
pushl %esi
pushl %ebx
movl 8(%ebp), %eax
movl 16(%ebp), %esi
movl (%esi,%eax,4), %edi
leal -1(%eax), %ecx
movl 12(%ebp), %ebx
incl %ebx
cmpl %ebx, %ecx
jge .L3

.L16:
decl %ebx
cmpl %edi, (%esi,%ebx,4)
jg .L16

.L7:
incl %ecx
cmpl %edi, (%esi,%ecx,4)
jl .L7
cmpl %ebx, %ecx
jge .L3
movl (%esi,%ecx,4), %edx
movl (%esi,%ebx,4), %eax
movl %eax, (%esi,%ecx,4)
movl %edx, (%esi,%ebx,4)
jmp .L16

.L3:
movl %ebx, %eax
popl %ebx
popl %esi
popl %edi
popl %ebp
ret

Page 5 of 15

C. (5 points): Fill in the blanks on the outline (on the previous page).

D. (4 points): Look at draft_horse and write out the control flow structure. As an example, the
control flow structure of bunny would be:

bunny() {
while() {

while() { }
while() { }
if() { }

}
return;

}

I want to know about any if, while, function calls, and returns, but I don’t care about anything else.
Do not use goto.

draft_horse() {

}

E. (bragging rights): What algorithm is this code implementing?

Page 6 of 15

draft_horse:
pushl %ebp
movl %esp, %ebp
subl $28, %esp
movl %ebx, -12(%ebp)
movl %esi, -8(%ebp)
movl %edi, -4(%ebp)
movl 8(%ebp), %ebx
movl 12(%ebp), %esi
movl 16(%ebp), %edi
cmpl %esi, %ebx
jge .L17
movl %edi, 8(%esp)
movl %esi, 4(%esp)
movl %ebx, (%esp)
call bunny
movl %eax, -16(%ebp)
movl %edi, 8(%esp)
movl %eax, 4(%esp)
movl %ebx, (%esp)
call draft_horse
movl %edi, 8(%esp)
movl %esi, 4(%esp)
movl -16(%ebp), %eax
incl %eax
movl %eax, (%esp)
call draft_horse

.L17:
movl -12(%ebp), %ebx
movl -8(%ebp), %esi
movl -4(%ebp), %edi
movl %ebp, %esp
popl %ebp
ret

Page 7 of 15

Problem 4. (8 points):
Given the following code:

1: int
2: calcHash(char *str) {
3: unsigned int i;
4: int hash = 0;
5:
6: for(i = 0; i < strlen(str); i++) {
7: hash += str[i] * 32 + i;
8:
9: }
10:
11:
12:
13:
14:
15: return hash;
16: }

A savvy programmer has re-written it to read as follows:

1: int
2: calcHash(char *str) {
3: unsigned int i, len = strlen(str);
4: int hashA = 0, hashB = 0;
5:
6: for(i = 0; i < len - 1; i += 2) {
7: hashA += (str[i] << 5) + i;
8: hashB += (str[i + 1] << 5) + i + 1;
9: }
10:
11: if(i == len - 1) {
12: hashA += (str[i] << 5) + i;
13: }
14:
15: return hashA + hashB;
16: }

Answer the questions about this code on the following page.

Page 8 of 15

A. Explain in one or two sentences how moving strlen(str) from line 6 to line 3 improves the performance
of this code.

Would this transformation would preserve the exact functionality of the original code? Explain.

B. Explain in one or two sentences how creating two separate add instructions on lines 7 and 8 improves
the performance of this code.

Is this an optimization that a compiler could perform? Why or why not?

C. Point out one other optimization that was added to this code and explain how it improves performance.

Page 9 of 15

Problem 5. (10 points):
This problem will test your knowledge of stack discipline and byte ordering. As in Lab 3, you will perform a
buffer overflow attack on the following C code. Your goal is to call secret and make the program execute
the infinite loop.

int read_string() {
char buf[8];
scanf("%s", &buf);
return buf[1];

}

int main() {
printf("0x%x\n", read_string());
return 0;

}

void secret(int arg) {
if(arg == 0x15213)
while(1);

exit(-1);
}

Things to keep in mind while working on this problem.

� scanf("%s", buf) reads an input string from stdin and stores it at address buf (including the
terminating ’\0’ character). It does not check the size of the destination buffer.

� Linux/x86 machines are Little Endian.

Page 10 of 15

A. Suppose we gave the program the codes 69 6c 75 76 32 31 33. Using the stack template
below, indicate where %ebp points to, and fill in the stack with the values that were just read in after
the call to scanf. Addresses increase from left to right.

|<---------------- buf ---------------->|
+----+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+----+

B. Using the assembly code on the next page, fill in the stack template below with codes that will cause
the program to execute secret and make it believe that arg has the value 0x15213. Addresses
increase from left to right and from top to bottom.

|<---------------- buf ---------------->|
+----+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+----+

+----+----+----+----+----+----+----+----+----+----+----+----+----+
| | | | | | | | | | | | | |
+----+----+----+----+----+----+----+----+----+----+----+----+----+

C. What is the value of %ebp when the instruction at 0x80483e2 is executed?

Page 11 of 15

08048398 <read_string>:
8048398: 55 push %ebp
8048399: 89 e5 mov %esp,%ebp
804839b: 83 ec 18 sub $0x18,%esp
804839e: 8d 45 f8 lea 0xfffffff8(%ebp),%eax
80483a1: 89 44 24 04 mov %eax,0x4(%esp,1)
80483a5: c7 04 24 74 84 04 08 movl $0x8048474,(%esp,1)
80483ac: e8 ef fe ff ff call 80482a0 <scanf>
80483b1: 8b 45 fc mov 0xfffffffc(%ebp),%eax
80483b4: c9 leave
80483b5: c3 ret

080483b6 <main>:
80483b6: 55 push %ebp
80483b7: 89 e5 mov %esp,%ebp
80483b9: 83 ec 08 sub $0x8,%esp
80483bc: 83 e4 f0 and $0xfffffff0,%esp
80483bf: b8 00 00 00 00 mov $0x0,%eax
80483c4: 29 c4 sub %eax,%esp
80483c6: e8 cd ff ff ff call 8048398 <read_string>
80483cb: 89 44 24 04 mov %eax,0x4(%esp,1)
80483cf: c7 04 24 77 84 04 08 movl $0x8048477,(%esp,1)
80483d6: e8 e5 fe ff ff call 80482c0 <printf>
80483db: b8 00 00 00 00 mov $0x0,%eax
80483e0: c9 leave
80483e1: c3 ret

080483e2 <secret>:
80483e2: 55 push %ebp
80483e3: 89 e5 mov %esp,%ebp
80483e5: 83 ec 08 sub $0x8,%esp
80483e8: 81 7d 08 13 52 01 00 cmpl $0x15213,0x8(%ebp)
80483ef: 75 02 jne 80483f3 <secret+0x11>
80483f1: eb fe jmp 80483f1 <secret+0xf>
80483f3: c7 04 24 ff ff ff ff movl $0xffffffff,(%esp,1)
80483fa: e8 d1 fe ff ff call 80482d0 <exit>
80483ff: 90 nop

Page 12 of 15

Problem 6. (8 points):
Consider the following C declarations:

typedef union{
char state[3];
char cncode[4];
int index;

} Location;

typedef struct {
short WID;
char name[5];
Location address;
double balance;
char domestic;
char *note;

} Warehouse;

A. Using the templates below (allowing a maximum of 28 bytes), indicate the allocation of data for
structs of type Warehouse. Mark off and label the areas for each individual element (arrays may be
labeled as a single element). Cross hatch the parts that are allocated, but not used, and be sure to
clearly indicate the end of the structure. Assume the Linux alignment rules discussed in class.

Warehouse:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
+--+
| |
+--+

B. How would you define the Compact structure to minimize the number of bytes allocated for the
structure using the same fields as the Warehouse structure?

typedef struct {

} Compact;

C. What is the value of sizeof(Compact)?

Page 13 of 15

D. Now consider the IA-32 Windows alignment convention. How would you define the Win Compact
structure to minimize the number of bytes allocated for the structure using the same fields as the
Warehouse structure?

typedef struct �

�
Win Compact;

E. Consider the following C code fragment:

Warehouse company1;

strcpy(company1.address.cncode, "CAN"); /* ’C’ = 43, ’A’ = 41, ’N’ = 4e */

After this code has been executed,

company1.address.index = 0x____________

Assume that this code is running on a little-endian machine such as a Linux/x86 machine. You must
give your answer in hexadecimal format.

Page 14 of 15

Problem 7. (7 points):
Answer true or false for each of the statements below. For full credit your answer must be correct and you
must write the entire word (either true or false in the answer space. You will be given � ��	�� point for each
correct answer, and ��� 	 � points for each incorrect answer, so wild guessing doesn’t pay.

1. int a[10], x;
x = &(a[5]) - &(a[1]);
x is always 4.

2. All Intel IA-32 instructions have the same length.

3. Processors with longer pipelines tend to make branch instructions
more costly.

4. To swap the values of two variables in C always requires using
some kind of temporary storage location.

5. In C, the variable m is declared as: int m[100][100]. De-
pending on the CPU architecture, the address for m[9][99] can
sometimes be greater than the address for m[10][0].

6. IEEE floating point numbers are evenly distributed for values
0.5 < x < 1.0.

7. IEEE floating point operations always round toward the nearest FP
number.

Page 15 of 15

