15-213

“The course that gives CMU its Zip!”

Dynamic Memory Allocation |
March 25, 2008

Topics
= Simple explicit allocators
= Data structures

= Mechanisms
= Policies

cl ass18. ppt

Harsh Reality

Memory Matters

Memory is not unbounded
= [t must be allocated and managed

= Many applications are memory dominated
= Especially those based on complex, graph algorithms

Memory referencing bugs especially pernicious
= Effects are distant in both time and space

Memory performance is not uniform

= Cache and virtual memory effects can greatly affect program
performance

= Adapting program to characteristics of memory syste m can
lead to major speed improvements

2 15-213, S'08

Dynamic Memory Allocation

Memory Allocator? .
Application

= VM hardware and kernel allocate pages
= Application objects are typically smaller Dynamic Memory Allocator

= Allocator manages objects within pages
= 4K page can hold ~64 64-byte objects

Heap Memory

Explicit vs. Implicit Memory Allocator

= Explicit: application allocates and frees space
=E.g.,, malloc() and free() inC

= Implicit: application allocates, but does not free space
= E.g. garbage collection in Java, ML or Lisp
Allocation

= |n both cases the memory allocator provides an abst raction of
memory as a set of blocks

= Doles out free memory blocks to application

Will discuss simple explicit memory allocation toda y

15-213, S’08

Process Memory Image

. memory invisible
kernel virtual memory {0 user code
Yesp — stilck
Memory mapped region for
Allocators request shared libraries
additional heap memory
from the operating
system using the sbrk T l— the “br k” ptr

function. : .
run-time heap (via mal | oc)

uninitialized data (. bss)

initialized data (. dat a)

program text (. t ext)

4 15-213, S'08

Malloc Package
#1 ncl ude <stdlib. h>

void *mal |l oc(size t size)

= |f successful:

= Returns a pointer to a memory block of at least siz e bytes, (typically)
aligned to 8-byte boundary.

= |f size == 0, returns NULL
= |f unsuccessful: returns NULL (0) and sets errno.

void free(void *p)

= Returns the block pointed at by p to pool of availa ble memory
= p must come from a previous callto mall oc() orrealloc().

void *realloc(void *p, size t size)
= Changes size of block p and returns pointer to new block.

= Contents of new block unchanged up to min of old an d new size.
= Old block has been free()'d (logically —if new != old)

5 15-213, S'08

Malloc Example

void foo(int n, int nm {
int i, *p;

/* allocate a block of nints */
p = (int *)malloc(n * sizeof (int));
if (p == NULL) {
perror("malloc");
exit(0);
}

for (i=0; i<n; i++4) p[i] =1i;

/* add m bytes to end of p block */

If ((p=(int *) realloc(p, (ntm * sizeof(int))) == NULL) {
perror(“"reall oc");
exit(0);

}

for (i=n; i <n+m i++) p[i] =i;

/[* print new array */

for (i=0; i<n+m i++)
printf("%\n", p[i]);

free(p); /* return p to available nenory pool */

15-213, S’08

Assumptions

Assumptions made in this lecture
= Memory is word addressed (each word can hold a poin ter)

Allocated block Free block
(4 words) (3 words) Allocated word

Free word

V4 15-213, S'08

Allocation Examples

o
=
I

mal | oc(4)

p2 = mal |l oc(5)

p3 = mal | oc(6)

free(p2)

p4 = mal |l oc(2)

15-213, S’08

Constraints

Applications:
= Can issue arbitrary sequence of allocation and free requests
= Free requests must correspond to an allocated block

Allocators
= Can’t control number or size of allocated blocks

= Must respond immediately to all allocation requests
= |.e., can't reorder or buffer requests

= Must allocate blocks from free memory
= i.e., can only place allocated blocks in free memory

= Must align blocks so they satisfy all alignment req uirements
= 8 byte alignment for GNU malloc (| i bc malloc) on Linux boxes

= Can manipulate and modify only free memory

= Can’t move the allocated blocks once they are alloc ated
= |.e., compaction is not allowed

O 15-213, S'08

Performance Goals: Throughput

Given some sequence of mal | oc and f r ee requests:
* R,R,,...R,...,R |

Want to maximize throughput and peak memory
utilization.

= These goals are often conflicting

Throughput:
= Number of completed requests per unit time

= Example:
= 5,000 mal | oc() calls and 5,000 free() callsin 10 seconds
= Throughput is 1,000 operations/second.

10 15-213, S'08

Performance Goals:
Peak Memory Utilization

Given some sequence of mal | oc and f r ee requests:
* R,R,...R,...,R |

Def: Aggregate payload P :
= mal | oc(p) results in a block with a payload of p bytes.
= After request R, has completed, the aggregate payload P, is the

sum of currently allocated payloads.
Def: Current heap size is denoted by H
= Assume that H, is monotonically nondecreasing

Def: Peak memory utilization:

= After k requests, peak memory utilization is:

U, = _P)/H
11 Uk (maX|<k |) / k 15-213. S'08

Internal Fragmentation

Poor memory utilization caused by fragmentation .
= Comes in two forms: internal and external fragmentation

Internal fragmentation

= For some block, internal fragmentation is the difference between the
block size and the payload size.

block
e Nl
- N\

Internal Internal
fragmentation payload fragmentation

= Caused by overhead of maintaining heap data structu res, padding for
alignment purposes, or explicit policy decisions (e .g., to return a big
block to satisfy a small request).

= Depends only on the pattern of previous requests, and thus is easy
to measure.

12 15-213, S'08

13

External Fragmentation

Occurs when there is enough aggregate heap memory, but no single
free block is large enough

pl = mall oc(4)

p2 = mal |l oc(5)

p3 = mal | oc(6)

free(p2)

p4 = mal | oc(6)
= Oops!

External fragmentation depends on the pattern of future requests, and
thus is difficult to measure.

15-213, S’08

Implementation Issues

How do we know how much memory is being freed
when we are given only a pointer (no length)?

How do we keep track of the free blocks?

What do we do with the extra space when allocating a
structure that is smaller than the free block it is
placed in?

How do we pick a block to use for allocation -- man vy
might fit?

How do we reinsert a freed block into the heap?

14 15-213, S'08

Knowing How Much to Free

Standard method

= Keep the length of a block in the word preceding th e block.
= This word is often called the header field or header

= Requires an extra word for every allocated block

pO = mal | oc(4) p0

o0 [N/

Block size data

15 15-213, S'08

Keeping Track of Free Blocks

Method 1 : Implicit list using lengths -- links all blocks

5 4 6 2

Method 2 : Explicit list among the free blocks using
pointers within the free blocks

/\

5| 4 6 2

Method 3 : Segregated free list
= Different free lists for different size classes

Method 4 : Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within
each free block, and the length used as a key

16 15-213, S'08

Method 1: Implicit List

For each block we need (length, is-allocated?)
= Could store this information in two words - wastefu !

= Standard trick
= |f blocks are aligned, some low-order address bits are always O
= |nstead of storing an always-0 bit, use itas a all ocated/free flag
= When reading size word, must mask out this bit

1 word
: a = 1: allocated block
5126 A a = 0: free block
Format of size: block size
allocated and
payload
free blocks : At
payload: application data
(allocated blocks only)
optional
padding

17 15-213, S'08

Implicit List: Finding a Free Block

First fit:
= Search list from beginning, choose first free block that fits

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already all ocated
(*p <=1len))) \\ too snall
Pp=p+(*p & -2); \\ goto next bl ock

= Can take linear time in total number of blocks (allocated and free)
= |n practice it can cause “splinters” at beginning of list

Next fit:
= Like first-fit, but search list starting where previous search finished
= Should often be faster than first-fit —avoids re-scanning unhelpful blocks

= Some research suggests that fragmentation is worse

Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over

= Keeps fragments small --- usually helps fragmentation

= Will typically run slower than first-fit
18 15-213, S'08

Bit Fields

How to represent the Header:

Masks and bitwise operators

#def i ne SI ZEMASK (~0x7)

#defi ne PACK(size, alloc) ((size) | (alloc))

#def i ne GET_SI ZE(p) ((p)->size & S| ZEMASK)
Bit Fields

struct {

unsi gned al | ocat ed: 1;
unsi gned si ze: 31,

} Header;
Check your K&R: structures are not necessarily pack ed

19 15-213, S'08

Implicit List: Allocating in Free Block

Allocating in a free block - splitting

= Since allocated space might be smaller than free sp ace, we

might want to split the block

4 4 6 2
!
P
voi d addbl ock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; [// add 1 and round up
Int oldsize = *p & -2; /1 mask out |ow bit
*P = newsize | 1; /'l set new | ength
I f (newsize < ol dsi ze)
*(p+tnewsi ze) = ol dsize - newsi ze; /1l set length in remaining
} /] part of bl ock
addbl ock(p, 2)

20

15-213, S’08

Implicit List: Freeing a Block

Simplest implementation:

= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2}

= But can lead to “false fragmentation”

4 4 4 2 2
t
free(p) P
4 4 4 2 2
mal | oc(5)
=Qops!

There is enough free space, but the allocator won't
find it

21

be able to

15-213, S’08

Implicit List: Coalescing

Join (coalesce) with next and/or previous

blocks, if they are free
= Coalescing with next block

void free block(ptr p) {
*P = fp & -2;
next = p + *p;
If ((*next & 1) == 0)
*P = *p + *next;

/'l clear allocated flag
/1 find next bl ock

// add to this block if

} /] not all ocated
4 4 4 2 2

free(p)

Logically gone

- = But how do we coalesce with

previous block?

15-213, S’08

Implicit List: Bidirectional Coalescing

Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but req uires extra space
= Important and general technique!

1 word
Header —, size
a = 1: allocated block
Format of a = 0: free block
load and . .
ﬁi%csltsgkznd pag;d%inzn size: total block size
payload: application data
Boundary tag —— size (allocated blocks only)
(footer)
/\/\/—\
4 4 |4 46 64 4

23

15-213, S’08

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
_ allocated allocated free free
block being
freed allocated free allocated free

24 15-213, S'08

Constant Time Coalescing (Case 1)

25

m1

m1

m1

m1

m2

m2

m2

m2

15-213, S’08

Constant Time Coalescing (Case 2)

26

m1

m1

m2

m2

m1 1
m1 1
n+m?2 0
n+m?2 0

15-213, S’08

Constant Time Coalescing (Case 3)

27

m1

n+ml

m1

m2

n+ml

m2

m2

15-213, S’08

Constant Time Coalescing (Case 4)

28

m1

n+ml+m?2

m1

m2

m2

n+ml+m?2

15-213, S’08

Summary of Key Allocator Policies

Placement policy:
= First-fit, next-fit, best-fit, etc.

= Trades off lower throughput for less fragmentation

= |Interesting observation : segregated free lists (next lecture)
approximate a best fit placement policy without hav ing to search
entire free list.

Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to t olerate?

Coalescing policy:
= Imnmediate coalescing: coalesce eachtime free() is called

= Deferred coalescing: try to improve performance of free() by
deferring coalescing until needed. e.qg.,
= Coalesce as you scan the free listfor nmal | oc() .
= Coalesce when the amount of external fragmentation reaches some

29 threshold. 15-213, S'08

Implicit Lists: Summary

Implementation: very simple
Allocate cost: linear time worst case

Free cost: constant time worst case -- even with
coalescing

Memory usage: will depend on placement policy
= First-fit, next-fit or best-fit

Not used in practice for nal |l oc()/free() because of

linear-time allocation. Used in many special purpo se
applications.

However, the concepts of splitting and boundary tag
coalescing are general to all allocators.

15-213, S’08

