
Memory System
Case Studies
Mar. 20, 2008

Topics
� P6 address translation
� x86-64 extensions
� Linux memory management
� Linux page fault handling
� Memory mapping

class17.ppt

15-213
“The course that gives CMU its Zip!”

2
15-213, S’08

Intel P6
(Bob Colwell’s Chip, CMU Alumni)

Internal designation for successor to Pentium
� Which had internal designation P5

Fundamentally different from Pentium
� Out-of-order, superscalar operation

Resulting processors
� Pentium Pro (1996)
� Pentium II (1997)

� L2 cache on same chip
� Pentium III (1999)

� The freshwater fish machines

Saltwater fish machines: Pentium 4Saltwater fish machines: Pentium 4
� Different operation, but similar memory system
� Abandoned by Intel in 2005 for P6-based Core 2 Duo

3
15-213, S’08

P6 Memory System

bus interface unit

DRAM

external
system bus

(e.g. PCI)

instruction
 fetch unit

L1
i-cache

L2
cache

cache bus

L1
d-cache

inst
TLB

data
TLB

processor package

 32 bit address space

 4 KB page size

 L1, L2, and TLBs
 4-way set associative

 Inst TLB
 32 entries
 8 sets

 Data TLB
 64 entries
 16 sets

 L1 i-cache and d-cache
 16 KB
 32 B line size
 128 sets

 L2 cache
 unified

 128 KB -- 2 MB

4
15-213, S’08

Review of Abbreviations

Symbols:
� Components of the virtual address (VA)

� TLBI: TLB index
� TLBT: TLB tag
� VPO: virtual page offset
� VPN: virtual page number

� Components of the physical address (PA)
� PPO: physical page offset (same as VPO)
� PPN: physical page number
� CO: byte offset within cache line
� CI: cache index
� CT: cache tag

5
15-213, S’08

Overview of P6 Address Translation
CPU

VPN VPO
20 12

TLBT TLBI
416

virtual address (VA)

...

TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO
20 12

Page tables

TLB
miss

TLB
hit

physical
address (PA)

result
32

...

CT CO
20 5

CI
7

L2 and DRAM

L1 (128 sets, 4 lines/set)

L1
hit

L1
miss

6
15-213, S’08

P6 2-level Page Table Structure
Page directory

� 1024 4-byte page directory entries
(PDEs) that point to page tables

� One page directory per process.
� Page directory must be in memory

when its process is running
� Always pointed to by PDBR

Page tables:
� 1024 4-byte page table entries

(PTEs) that point to pages.
� Page tables can be paged in and

out.

page
directory

...

Up to
1024
page

tables

1024
PTEs

1024
PTEs

1024
PTEs

...

1024
PDEs

7
15-213, S’08

P6 Page Directory Entry (PDE)

Page table physical base addr Avail G PS A CD WT U/S R/W P=1

Page table physical base address : 20 most significant bits of
physical page table address (forces page tables to be 4KB
aligned)

Avail : These bits available for system programmers
G: global page (don’t evict from TLB on task switch)
PS: page size 4K (0) or 4M (1)
A: accessed (set by MMU on reads and writes, cleared by software)
CD: cache disabled (1) or enabled (0)
WT: write-through or write-back cache policy for this page table
U/S: user or supervisor mode access
R/W: read-only or read-write access
P: page table is present in memory (1) or not (0)

31 1211 9 8 7 6 5 4 3 2 1 0

Available for OS (page table location in secondary storage) P=0

31 01

8
15-213, S’08

P6 Page Table Entry (PTE)

Page physical base address Avail G 0 D A CD WT U/S R/W P=1

Page base address : 20 most significant bits of physical page
address (forces pages to be 4 KB aligned)

Avail : available for system programmers
G: global page (don’t evict from TLB on task switch)
D: dirty (set by MMU on writes)
A: accessed (set by MMU on reads and writes)
CD: cache disabled or enabled
WT: write-through or write-back cache policy for this page
U/S: user/supervisor
R/W: read/write
P: page is present in physical memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page location in secondary storag e) P=0

31 01

9
15-213, S’08

How P6 Page Tables Map Virtual
Addresses to Physical Ones

PDE

PDBR
physical address
of page table base
(if P=1)

physical
address
of page base
(if P=1)

physical address
of page directory

word offset into
page directory

word offset into
page table

page directory page table

VPN1
10

VPO
10 12

VPN2 Virtual address

PTE

PPN PPO

20 12
Physical address

word offset into
physical and virtual
page

10
15-213, S’08

Representation of VM Address Space

Simplified Example
� 16 page virtual address space

Flags
� P: Is entry in physical memory?
� M: Has this part of VA space been

mapped?

Page Directory

PT 3

P=1, M=1

P=1, M=1

P=0, M=0

P=0, M=1

•
•
•
•

P=1, M=1

P=0, M=0

P=1, M=1

P=0, M=1

•
•
•
•

P=1, M=1

P=0, M=0

P=1, M=1

P=0, M=1

•
•
•
•

P=0, M=1

P=0, M=1

P=0, M=0

P=0, M=0

•
•
•
•

PT 2

PT 0

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

Page 11

Page 12

Page 13

Page 14

Page 15

Mem Addr

Disk Addr

In Mem

On Disk

Unmapped

12
15-213, S’08

P6 TLB
TLB entry (not all documented, so this is speculati ve):

� V: indicates a valid (1) or invalid (0) TLB entry
� Tag: disambiguates entries cached in the same set
� PPN: translation of the address indicated by index & t ag
� G: page is “global” according to PDE, PTE
� S: page is “supervisor-only” according to PDE, PTE
� W: page is writable according to PDE, PTE
� D: PTE has already been marked “dirty” (once is enoug h)

Structure of the data TLB:
� 16 sets, 4 entries/set

PPN Tag W

11620

S

1

G

1

V

1

D

1

entry entry entry entry
entry entry entry entry

entry entry entry entry
...

set 0
set 1

set 15

13
15-213, S’08

Translating with the P6 TLB
1. Partition VPN into
TLBT and TLBI.

2. Is the PTE for VPN
cached in set TLBI?

3. 3. YesYes : then check : then check
permissions, build permissions, build
physical address. physical address.

4. No: then read PTE
(and PDE if not
cached) from memory
and build physical
address.

CPU

VPN VPO
20 12

TLBT TLBI
416

virtual address

PDE PTE

...
TLB
miss

TL
B
hit

page table translation

PPN PPO
20 12

physical
address

1 2

3

4

15
15-213, S’08

Translating with the P6 Page Tables
(case 1/1)

Case 1/1: page
table and page
present.

MMU Action:
� MMU builds

physical address
and fetches data
word.

OS action
� None

VPN

VPN1 VPN2

PDE

PDBR

PPN PPO
20 12

20
VPO
12

p=1 PTE p=1

Data
page

data

Page
directory

Page
table

Mem

Disk

16
15-213, S’08

Translating with the P6 Page Tables
(case 1/0) Case 1/0: page table

present but page
missing.

MMU Action:
� Page fault exception
� Handler receives the

following args:
� %EIP that caused fault
� VA that caused fault
� Fault caused by non-

present page or page-
level protection
violation
� Read/write
� User/supervisor

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=1 PTE

Page
directory

Page
table

Mem

Disk
Data
page

data

p=0

17
15-213, S’08

Translating with the P6 Page Tables
(case 1/0, cont) OS Action:

� Check for a legal virtual
address.

� Read PTE through PDE.
� Find free physical page

(swapping out current
page if necessary)

� Read virtual page from
disk into physical page

� Adjust PTE to point to
physical page, set p=1

� Restart faulting
instruction by returning
from exception handler.

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=1 PTE p=1

Page
directory

Page
table

Data
page

data

PPN PPO
20 12

Mem

Disk

18
15-213, S’08

Translating with the P6 Page Tables
(case 0/1)

Case 0/1: page table
missing but page
present.

Introduces
consistency issue.
� Potentially every

page-out requires
update of disk page
table.

Linux disallows this
� If a page table is

swapped out, then
swap out its data
pages too.

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=0

PTE p=1

Page
directory

Page
table

Mem

Disk

Data
page

data

19
15-213, S’08

Translating with the P6 Page Tables
(case 0/0)

Case 0/0: page
table and page
missing.

MMU Action:
� Page fault

exception

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=0

PTE

Page
directory

Page
table

Mem

Disk
Data
page

datap=0

20
15-213, S’08

Translating with the P6 Page Tables
(case 0/0, cont)

OS action:
� Swap in page

table.
� Restart faulting

instruction by
returning from
handler.

Like case 0/1
from here on.
� Two disk reads (8

sectors each) will
probably require
>15 ms

VPN

VPN1 VPN2

PDE

PDBR

20
VPO
12

p=1 PTE

Page
directory

Page
table

Mem

Disk
Data
page

data

p=0

22
15-213, S’08

L1 Cache Access
Partition physical
address into CO, CI,
and CT.

Use CT to determine if
 line containing word
at address PA is
cached in set CI.

If no: check L2.

If yes: extract word at
byte offset CO and
return to processor.

physical
address (PA)

data
32

...

CT CO
20 5

CI
7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1
hit

L1
miss

23
15-213, S’08

Speeding Up L1 Access

Observation
� Bits that determine CI identical in virtual and phy sical address
� Can index into cache while address translation taki ng place
� Generally we hit in TLB, so PPN bits (CT bits) avai lable next
� “Virtually indexed, physically tagged”
� Cache carefully sized to make this possible

Physical address (PA)

CT CO
20 5

CI
7

virtual
address (VA)

VPN VPO

20 12

PPOPPN

Addr.
Trans.

No
Change CI

Tag Check

24
15-213, S’08

x86-64 Paging

OriginOrigin
� AMD’s way of extending x86 to 64-bit instruction se t
� Intel has followed with “EM64T”

RequirementsRequirements
� 48-bit virtual address

� 256 terabytes (TB)
� Not yet ready for full 64 bits

� Nobody can buy that much DRAM yet
� Mapping tables would be huge
� Multi-level array map may not be the right data str ucture

� 52-bit physical address
� Requires 64-bit table entries

� Keep traditional x86 4KB page size
� (4096 bytes per PT) / (8 bytes per PTE) = only 512 entries per page

25
15-213, S’08

x86-64 Paging

PM4LE

BR

Page Map
Table

VPN1
9

VPO
12

Virtual address

PPN PPO

40 12
Physical address

VPN2 VPN3 VPN4
9 9 9

PDPE

Page
Directory
Pointer
Table

PDE

Page
Directory

Table

PTE

Page
Table

26
15-213, S’08

vm_next

vm_next

Linux Organizes VM as Collection of
“Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

0x08048000

0x0804a020

0x40000000

� pgd:
� Page directory address

� vm_prot:
� Read/write permissions for

this area
� vm_flags

� Shared with other
processes or private to this
process

vm_flags

vm_flags

vm_flags

27
15-213, S’08

Linux Page Fault Handling

vm_area_struct

vm_end

r/o

vm_next

vm_start

vm_end

r/w

vm_next

vm_start

vm_end

r/o

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

Is the VA legal?
� i.e., Is it in an area

defined by a
vm_area_struct?

� If not (#1), then signal
segmentation violation

Is the operation
legal?
� i.e., Can the process

read/write this area?
� If not (#2), then signal

protection violation

Otherwise
� Valid address (#3):

handle fault

write

read

read
1

2

3

28
15-213, S’08

Memory Mapping

Creation of new VM area done via “memory mapping”
� Create new vm_area_struct and page tables for area
� Area can be backed by (i.e., get its initial values from) :

� Regular file on disk (e.g., an executable object fi le)
� Initial page bytes come from a section of a file

� Nothing (e.g., BSS)
� First fault will allocate a physical page full of 0 's
� Once the page is written to (dirtied), it is like a ny other page

� Dirty pages are swapped back and forth between a sp ecial
swap file.

Key point : no virtual pages are copied into physical
memory until they are referenced!
� Known as “demand paging”
� Crucial for time and space efficiency

29
15-213, S’08

User-Level Memory Mapping
void *mmap(void *start, int len,

 int prot, int flags, int fd, int offset)

� Map len bytes starting at offset offset of the file specified by
file description fd, preferably at address start
� start: may be 0 for “pick an address”
� prot: MAP_READ, MAP_WRITE
� flags: MAP_PRIVATE, MAP_SHARED

� Return a pointer to start of mapped area (may not b e start)
� Example: fast file-copy

� Useful for applications like Web servers that need to quickly copy
files.

� mmap()allows file transfers without copying into user spa ce.

30
15-213, S’08

mmap() Example: Fast File Copy
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

/*
 * mmap.c - a program that uses mmap
 * to copy its source code to stdout
 */

int main() {
 struct stat stat;
 int i, fd, size;
 char *bufp;

 /* open the file & get its size*/
 fd = open("./mmap.c", O_RDONLY);
 fstat(fd, &stat);
 size = stat.st_size;
 /* map the file to a new VM area */
 bufp = mmap(0, size, PROT_READ,
 MAP_PRIVATE, fd, 0);

 /* write the VM area to stdout */
 write(1, bufp, size);
 exit(0);
}

31
15-213, S’08

Exec() Revisited

kernel code/data/stack

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)

initialized data (.data)
uninitialized data (.bss)

stack

forbidden
0

%esp
process
 VM

brk

0xc0…

physical memorysame
for each
process

process-specific data
structures

(page tables,
task and mm structs)

kernel
VM

To run a new program p in
the current process
using exec():
� Free vm_area_struct’s and

page tables for old areas.
� Create new

vm_area_struct’s and page
tables for new areas.
� Stack, BSS, data, text,

shared libs.
� Text and data backed by ELF

executable object file.
� BSS and stack initialized to

zero.
� Set PC to entry point in

.text
� Linux will fault in code, data

pages as needed.

.data
.text

p

demand-zero

demand-zero

libc.so

.data
.text

32
15-213, S’08

Fork() Revisited
To create a new process using fork():

� Make copies of the old process’s mm_struct,
vm_area_struct’s, and page tables.
� At this point the two processes share all of their pages.
� How to get separate spaces without copying all the virtual pages

from one space to another?
� “Copy on Write” (COW) technique.

� Copy-on-write
� Mark PTE's of writeable areas as read-only
� Writes by either process to these pages will cause page faults
� Flag vm_area_struct’s for these areas as private “c opy-on-write”

� Fault handler recognizes copy-on-write, makes a cop y of the
page, and restores write permissions.

Net result:Net result:
� Copies are deferred until absolutely necessary (i.e ., when one

of the processes tries to modify a shared page).

33
15-213, S’08

Memory System Summary
L1/L2 Memory Cache

� Purely a speed-up technique
� Behavior invisible to application programmer and (m ostly) OS
� Implemented totally in hardware

Virtual Memory
� Supports many OS-related functions

� Process creation, task switching, protection
� Software

� Allocates/shares physical memory among processes
� Maintains high-level tables tracking memory type, s ource, sharing
� Handles exceptions, fills in hardware-defined mappi ng tables

� Hardware
� Translates V �P via mapping tables, enforcing permissions
� Accelerates mapping via translation cache (TLB)

34
15-213, S’08

Further Reading
Intel TLBs

Application Note: “TLBs, Paging-Structure Caches, a nd Their
Invalidation”, April 2007

