15-213
“The course that gives CMU its Zip!”

Memory System
Case Studies
Mar. 20, 2008

Topics
= P6 address translation
= x86-64 extensions
= Linux memory management
= Linux page fault handling
= Memory mapping

class17. ppt

32 bit addi
P6 Memory SyStem o e

4 KB page size
L1, L2, and TLBs

DRAM 4-way set associative

external Inst TLB
“4————— system bus 32 entries
(e.g. PCI) 8sets
3 Data TLB
i L2
64 entries.
cache
16 sets
cache bus
L1i-cache and d-cache

i bus interface unit 16 KB
i 32 B line size
i 128 sets
i L2 cache
i unified
i 128 KB --2 MB.
processor package
15213, 508

Overview of P6 Address Translation

virtual address (VA)
ot

‘l—l—l—l , TLB ‘ L‘l (12‘8 Sel?‘ 4 lines/set)
—r—r— o

- e — —

o — — S s s

TLB (16 sets,
4 entries/set)

Eo R
physical

address (PA)

T 117

b

poer Page tables
15213, 508

Intel P6
(Bob Colwell's Chip, CMU Alumni)
Internal designation for successor to Pentium
= Which had internal designation P5

Fundamentally different from Pentium
= Out-of-order, superscalar operation

Resulting processors
= Pentium Pro (1996)
= Pentium Il (1997)
* L2 cache on same chip
= Pentium 111 (1999)
« The freshwater fish machines

Saltwater fish machines: Pentium 4
= Different operation, but similar memory system
= Abandoned by Intel in 2005 for P6-based Core 2 Duo
15213, 508

Review of Abbreviations

Symbols:

= Components of the virtual address (VA)
* TLBI: TLB index
* TLBT: TLB tag
* VPO: virtual page offset
* VPN: virtual page number

= Components of the physical address (PA)
* PPO: physical page offset (same as VPO)
+ PPN: physical page number
* CO: byte offset within cache line
» Cl: cache index
* CT: cache tag

15213, 508

P6 2-level Page Table Structure

Page directory ligzlg
= 1024 4-byte page directory entries page
(PDEs) that point to page tables tables

= One page directory per process.

= Page directory must be in memory
when its process is running

= Always pointed to by PDBR

Page tables:
= 1024 4-byte page table entries
(PTEs) that point to pages.
= Page tables can be paged in and
out.

15213, 508

P6 Page Directory Entry (PDE)

e —— I I R T T

Page table physical base address _: 20 most significant bits of
physical page table address (forces page tablesto b 4KB
aligned)

Avail: These bits available for system programmers
G: global page (don' evict from TLB on task switch)

PS: page size 4K (0) or 4M (1)

A: accessed (set by MMU on reads and wiites, cleared by software)
CD: cache disabled (1) or enabled (0)

WT: write-through or write-back cache policy for this page table
IS: user or supervisor mode access

: read-only or read-write access

: page table is present in memory (1) or not (0)

'ﬂ‘g ‘c
=

| Available for OS (page table location in secondary _ storage)

How P6 Page Tables Map Virtual
Addresses to Physical Ones
[VPNL [vPNZ [VPO] Virtual address
page drectory page tale physical nd viual
paue
page directory page table
physica
N of pa base
P
st waoress of page table hese
P
[PPN PPO.] Physical address

P6 TLB Translation

L2and DRAM

virtual address (VA)

TLB (46 sets,
4 entries/set)

physical
address (PA)

Page tables
POBR 15213, 508

P6 Page Table Entry (PTE)

[P sssess | war[o Lo o] [eowrlusfo

Page base address : 20 most significant bits of physical page
address (forces pages to be 4 KB aligned)

Avail: available for system programmers

G: global page (don' evict from TLB on task switch)

D: dirty (set by MMU on writes)

A: accessed (set by MMU on reads and writes)

CD: cache disabled or enabled

WT: write-through or write-back cache policy for this page

UIS: user/supervisor

RIW: read/write

P: page s present in physical memory (1) or not (0)

I Available for OS (page location i secondary storag _e)

15213, 508

Representation of VM Address Space

Page Directory

Simplified Example
= 16 page virtual address space

pagea —* Mem Addr
Page3 ~--» Disk Addr

Pue2 [inem

Flags Page 1
= P: Is entry in physical memory? pagen [L] OnDisk
= M: Has this part of VA space been - Unmapped
mapped?
10 15213, 508

P6 TLB

TLB entry (not all documented, so this is speculati ~ ve):

PP
I PPN I Tag [v]e]s]w]e]

indicates a valid (1) or invalid (0) TLB entry

= Tag: disambiguates entries cached in the same set

= PPN: translation of the address indicated by index & t ag
= G: page is “global” according to PDE, PTE

age is “supervisor-only” according to PDE, PTE

= W: page is writable according to PDE, PTE

PTE has already been marked “dirty” (once is enoug ~ h)

. seto
Structure of the data TLB: ey
= 16 sets, 4 entries/set
entry | entry | ent set15
15213, 508

Translating with the P6 TLB

1. Partition VPN into
TLBT and TLBI.

2. Is the PTE for VPN
cached in set TLBI?

3. Yes: then check
permissions, build
physical address.

4. No: then read PTE
(and PDE if not
cached) from memory

physical and build physical
page table translation QaDdd’ess address.

15213, 508
13

Translating with the P6 Page Tables
(case 1/1)

Case 1/1: page
table and page

present.
o MMU Action:
= MMU builds
physical address
and fetches data
PDBR word.
Page Page Data
directory table page OS action
. = None
Disk
15213, 508
15

Translating with the P6 Page Tables
(Case 1/07 Cont) OS Action:

= Check for a legal virtual
address.

PO = Find free physical page
(swapping out current
page if necessary)

= Read virtual page from
disk into physical page
Page Page Data = Adjust PTE to point to
directory table page physical page, set p=1
* Restart faulting
instruction by returning
Disk from exception handler.

15213, 508
17

= Read PTE through PDE.

P6 Page Table Translation

L2and DRAM

L1 (128 sets, 4 lines/set)
T T

T 117

TLB (16 sets,
4 entries/set)

el

£

cr

physical
address (PA)

15213, 508

Translating with the P6 Page Tables

(Case 1/0) Case 1/0: page table

present but page
missing.
MMU Action:
= Page fault exception
= Handler receives the
following args:
* %EIP that caused fault
» VA that caused fault
Page Page = Fault caused by non-

directory table present page or page-
level protection
violation
Disk * Read/write
Data * User/supervisor
page !
15213, 508
16

Translating with the P6 Page Tables
(Case 0/1) Case 0/1: page table
missing but page

present.
Introduces
consistency issue.
= Potentially every

page-out requires
update of disk page
table

Mem
PDBR —
ata f . .
directory page Linux disallows l.hIS
= If a page table is
swapped out, then
i swap out its data
Disk pages too.
Page
table

15213, 508
18

Translating with the P6 Page Tables
(case 0/0)

Case 0/0: page
table and page

missing.
MMU Action:
= Page fault
exception
directory
Disk % %
Page Data
table page 15213, 508

P6 L1 Cache Access

L2and DRAM

|
|
|

TLB (46 sets,
4 entries/set)

physical
address (PA)

pber Page tables

21 16213, 808
Speeding Up L1 Access
Tag Check
|
Physical address (PA)
/I:I:I:I:I
virtual
address (VA)
Observation

= Bits that determine Cl identical in virtual and phy sical address
= Can index into cache while address translation taki ng place

= Generally we hit in TLB, so PPN bits (CT bits) avai lable next

= “Virtually indexed, physically tagged”

= Cache carefully sized to make this possible 15213, 508

Translating with the P6 Page Tables
(case 0/0, cont)

OS action:
= Swap in page
table
= Restart faulting
instruction by
returning from
handler.

Like case 0/1
from here on.
= Two disk reads (8
sectors each) will
probably require
Data >15ms
page

Page
directory table

15213, 508

L1 Cache Access

Partition physical
address into CO, ClI,
and CT.

Use CT to determine if
line containing word
at address PA is
cached in set CI.

If no: check L2.

If yes: extract word at
byte offset CO and
return to processor.

physical
address (PA)

15213, 508

x86-64 Paging

Origin
= AMD's way of extending x86 to 64-bit instruction se t
= Intel has followed with “EM64T"

Requirements
= 48-bit virtual address
+ 256 terabytes (TB)
* Not yet ready for full 64 bits
+ Nobody can buy that much DRAM yet
* Mapping tables would be huge
* Multi-level array map may not be the right data str ucture
= 52-bit physical address
* Requires 64-bit table entries
= Keep traditional x86 4KB page size
* (4096 bytes per PT) / (8 bytes per PTE) = only 512 entries per page

15213, 508

24

x86-64 Paging

Virtual address
5 5 5 5
e ez ves [v T wo]

Page
Directory Page
Pointer Directory

able able

12
[PPN PPO] Physical address

15-213, 508

Linux Page Fault Handling

process virtual memory Is the VA legal?
vm_area_struct =i, Isitinan area
vm E‘:f‘ defined by a
- ,lsu vm_area_struct?
- shared libraries = If not (#1), then signal
” M e @ segmentation violation
l—read
vm_end Is the operation
—
S o . ©) legal?
lata read
e *i.e., Can the process
FA @ read/write this area?
Vi ond o [lE—wif not (#2), then signal
vm_start protection violation
tlo
Otherwise
Vm_next .
o = Valid address (#3):
handle fault . oo

27

User-Level Memory Mapping

void *mmap(void *start, int len,
int prot, int flags, int fd, int offset)

= Map | en bytes starting at offset of f set of the file specified by
file description f d, preferably at address start
«start: may be O for “pick an address”
» prot: MAP_READ, MAP_WRITE
« fl ags: MAP_PRIVATE, MAP_SHARED
= Return a pointer to start of mapped area (may notb estart)
= Example: fast file-copy
» Useful for applications like Web servers thatneed to quickly copy
files.
+ nmap() allows file ransfers without copying into user spa ce.

15-213, 508

29

Linux Organizes VM as Collection of

Areas
vm_area_struct process virtual memory
task_struct S—
mm_struct vm_end
[T vm_start
mprot
mmap vm_flags
o shared libraries
ym ne; 0x40000000
vmend |
Ll pgd vm_start
= Page directory address | .vm prot | data
. vm_flags
* vm_prot: 0x0804a020
= Read/write for vm_next
this area
text
* vm_flags Vm_end
= Shared with other [vm start | 0x08048000
processes or private to this ["vm_prot
process vm_flags'
vm_next o
26

Memory Mapping

Creation of new VM area done via “memory mapping”
= Create new vm_area_struct and page tables for area
= Area can be backed by (i.e., getits initial values from) :
+ Regular file on disk (e.g., an executable objectfi le)
+ Initial page bytes come from a section of a file
+ Nothing (e.g., BSS)
* First fault will allocate a physical page full of 0 's
* Once the page is written to (dirtied), itis like a ny other page
= Dirty pages are swapped back and forth between asp ecial
swap file.

Key point : no virtual pages are copied into physical
memory until they are referenced!
= Known as “demand paging”
= Crucial for time and space efficiency

15213, 508
28

#incl ude <um std. h> int main() {

#incl ude <sys/ mman. h> struct stat stat;

#i ncl ude <sys/ types. h> Tnt b, fd size:

#incl ude <sys/stat.h> Lt S12E

#include <fcntl. h> char *buf p;

I I+ open the file & get its size*/
* mmap.c - a program that uses mmp fd = open("./mmap.c", O RDONL

* to copy its source code Lo stdout fstat(fd, &stat);

* size = stat.st_size;

/* map the file to a new VMarea */
bufp = mmap(0, size, PROT_READ,
NAP_PRIVATE, fd, 0

/* wite the VMarea to stdout */
wite(1, bufp, size)
exit(0)

15213, 508

Exec() Revisited

To run a new program p in
the current process

process-specific data

(page tables, using exec():
task and mm structs)
= Free vm_area_struct's and
same physical memory —area_
for each page tables for old areas.
process | | emel codefsaraistack || o' = Create new
oxco

S%esp stack |[«—demand-zero vm_area_struct's and page
13 l process tables for new areas.
M
* Stack, BSS, data, text,

t
Memory mapped region shared libs.
for shared lbrares [e] + Text and data backed by ELF

1 libc.so executable object file.
ok * BSS and stack initialized to
untime heap (via malioc)
zero,
uninitialized data (bss) | .
initialized data (data) | * Set PC to entry point in
orogram text text) x| text
forbidden [» Linux will fault in code, data
31 pages as needed. 15213, 508

Memory System Summary

L1/L2 Memory Cache
= Purely a speed-up technique
= Behavior invisible to application programmer and (m ostly) OS
= Implemented totally in hardware

Virtual Memory
= Supports many OS-related functions
* Process creation, task switching, protection
= Software
» Allocates/shares physical memory among processes
* Maintains high-level tables tracking memory type, s ource, sharing
* Handles exceptions, fills in hardware-defined mappi ng tables
= Hardware
« Translates V =P via mapping tables, enforcing permissions
* Accelerates mapping via translation cache (TLB)

15213, 508
3

32

Fork() Revisited

To create a new process using fork():

= Make copies of the old process’'s mm_struct,
vm_area_struct's, and page tables.

* Atthis point the two processes share all of their pages.

* How to get separate spaces without copying all the
from one space to another?
* “Copy on Write” (COW) technique.
= Copy-on-write
* Mark PTE's of writeable areas as read-only

virtual pages

* Writes by either process to these pages will cause page faults

* Flag vm_area_structs for these areas as private c
* Fault handler recognizes copy-on-write, makes a cop
page, and restores write permissions.

Net result:

= Copies are deferred until absolutely necessary (i.e
of the processes tries to modify a shared page).

Further Reading

Intel TLBs

Application Note: “TLBs, Paging-Structure Caches, a
Invalidation”, April 2007

opy-on-write”
y of the

., when one

15213, 508

nd Their

15213, 508

