15-213 "The course that gives CMU its Zip!"

Virtual Memory March 18, 2007

Topics

- Address spaces
- Motivations for virtual memory
- Address translation
- Accelerating translation with TLBs

All About Memory

How memory works

- Capacitors, magnetic domains
- Row address, column address, row buffer, supercell
- We covered this back in mid-February

What memory does

- Store stuff!
- More formally
 - fetch: address ⇒ data
 - store: address, data ⇒ .
- The world is imperfect, so...
 - fetch: address ⇒ {data ∪ ⊗ }
 - store: address, data ⇒ { . ∪ ⊗ }

Complaints

This kind of memory has problems

- It has finite size
 - A single program might need more memory than is available
- Each system has only one memory
 - If we will run multiple programs, each program needs a simple way to know which memory it should use
- Programmer A doesn't want mistakes made by Programmer B to inflict un-debuggable random crashes on her
 - We need a way to stop programs from accidentally using the wrong memory

But it's the only kind of memory we have

Happiness via Mathematics

One simple trick solves all three problems

- Imagine per-process private memories
 - process-id ⇒ fetch: (address ⇒ data)
 process-id ⇒ store: (address, data ⇒ .)
- This would fix "how to share" and "don't use the wrong memory"
 - Surprisingly, it also fixes "finite size"
- Implementation is a little different
 - process-id ⇒ map: (process-address ⇒ {physical-address ∪ ⊗ })
 - mfetch: fetch(map(address)) ⇒ {data ∪ ⊗ }
 - mstore: store(map(address), data) ⇒ { . ∪ ⊗ }

This mapping trick is the heart of virtual memory

Address Spaces

A *linear address space* is an ordered set of contiguous nonnegative integer addresses:

A virtual address space is a set of $N = 2^n$ virtual addresses:

A physical address space is a set of $M = 2^m$ (for convenience) physical addresses:

In a system based on virtual addressing, each byte of main memory has a physical address and a virtual address (or more).

A System Using Physical Addressing

Used by many digital signal processors and embedded microcontrollers in devices like phones and PDAs.

6

A System Using Virtual Addressing

One of the great ideas in computer science. Used by all modern desktop and laptop microprocessors.

Why Virtual Memory?

(1) VM uses main memory efficiently

- Main memory is a cache for the contents of a virtual address space stored on disk.
- Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed.

(2) VM simplifies memory management

Each process gets the same linear address space.

(3) VM protects address spaces

- One process can't interfere with another.
 - Because they operate in different address spaces.
- User process cannot access privileged information
 - Different sections of address spaces have different permissions.

(1) VM as a Tool for Caching

Virtual memory is an array of N contiguous bytes stored on disk.

The contents of the array on disk are cached in physical memory (DRAM cache)

DRAM Cache Organization

DRAM cache organization driven by the enormous miss penalty

- DRAM is about 10x slower than SRAM
- Disk is about 100,000x slower than a DRAM

DRAM cache properties

- Large page (block) size (typically 4-8 KB)
- Fully associative
 - Any virtual page can be placed in any physical page
 - This requires a "large" mapping function –different from other caches
- Highly sophisticated replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
- Write-back rather than write-through

Page Tables

A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.

Kernel data structure in DRAM

Page Hits

A page hit is a reference to a VM word that is in physical (main) memory.

12

Page Faults

A page fault is caused by a reference to a VM word that is not in physical (main) memory.

 Example: A instruction references a word contained in VP 3, a miss that triggers a page fault exception

Page Faults (cont)

The kernel's page fault handler selects VP 4 as the victim and replaces it with a copy of VP 3 from disk (demand paging)

 When the offending instruction restarts, it executes normally, without generating an exception

Servicing a Page Fault

(1) Processor signals disk controller

 Read block of length P starting at disk address X and store starting at memory address Y

(2) Read occurs

- Direct Memory Access (DMA)
- Under control of I/O controller

(3) Controller signals completion

- Interrupts processor
- OS resumes suspended process

15

Allocating Virtual Pages

Example: Allocating new virtual page VP5

16

Kernel allocates VP 5 on disk and points PTE 5 to this new

Locality to the Rescue

Virtual memory works because of locality.

At any point in time, programs tend to access a set of active virtual pages called the working set.

 Programs with better temporal locality will have smaller working sets.

If (working set size < main memory size)

Good performance after initial compulsory misses.

If (working set size > main memory size)

 Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously

(2) VM as a Tool for Memory Mgmt

Key idea: Each process has its own virtual address space

- It can view memory as a simple linear array
- The mapping function scatters addresses through physical memory

Carefully chosen mappings simplify memory allocation, sharing, linking, and loading.

Simplifying Sharing and Allocation

Memory allocation

- Each virtual page can be mapped to any physical page
 - A virtual page can be stored in different physical pages at different times –the program never knows

Sharing code and data among processes

Map virtual pages to the same physical page (PP 7)

Simplifying Linking and Loading

Linking

Each program has similar virtual address space

 Code, stack, and shared libraries always start at the same address.

Loading

 execve() maps PTEs to the appropriate location in the executable binary file.

• The .text and .data sections are copied, page by page, on demand by the virtual memory system.
0x08048000

(3)VM as a Tool for Memory Protection

Extend PTEs with permission bits.

Page fault handler checks these before remapping.

If violated, send process SIGSEGV (segmentation fault)

Page tables with permission bits

VM Address Translation

Virtual Address Space

 $V = \{0, 1, ..., N-1\}$

Physical Address Space

- $P = \{0, 1, ..., M-1\}$
- M < N (usually, but >=4 Gbyte on an IA32 possible)

Address Translation

- MAP: $V \rightarrow P \cup \{\emptyset\}$
- For virtual address a:
 - MAP(a) = a' if data at virtual address a at physical address a' in P
 - MAP(a) = \emptyset if data at virtual address a not in physical memory
 - Data stored on disk, or address not valid for this process

Address Translation with a Page Table

VIRTUAL ADDRESS

PHYSICAL ADDRESS

23 15-213, S'08

Address Translation: Page Hit

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) MMU sends physical address to L1 cache
- 5) L1 cache sends data word to processor

Address Translation: Page Fault

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim, and if dirty pages it out to disk
- 6) Handler pages in new page and updates PTE in memory
- 7) Handler returns to original process, restarting faulting instruction.

Integrating VM and Cache

Page table entries (PTEs) are cached in L1 like any other memory word.

- PTEs may be evicted by other data references
- PTE hit still requires a 1-cycle delay

Solution: Cache PTEs in a small fast memory in the MMU.

Translation Lookaside Buffer (TLB)

Speeding up Translation with a TLB

Translation Lookaside Buffer (TLB)

- Small hardware cache in MMU
- Maps virtual page numbers to physical page numbers
- Contains complete page table entries for small number of pages

27 15-213, S'08

TLB Hit

A TLB hit eliminates a memory access.

TLB Miss

A TLB miss incurs an additional memory access (the PTE).

29 Fortunately, TLB misses are rare. Why?

Simple Memory System Example

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

Simple Memory System Page Table

Only show first 16 entries (out of 256)

VPN	PPN	Valid	VPN	PPN	Valid
00	28	1	08	13	1
01	_	0	09	17	1
02	33	1	0A	09	1
03	02	1	0B	1	0
04	1	0	0C	1	0
05	16	1	0D	2D	1
06	-	0	0E	11	1
07	_	0	0F	0D	1

Simple Memory System TLB

TLB

- 16 entries
- 4-way associative

Set	Tag	PPN	Valid									
0	03	_	0	09	0D	1	00	_	0	07	02	1
1	03	2D	1	02	_	0	04	_	0	0A	_	0
2	02	_	0	80	_	0	06	_	0	03	_	0
3	07	_	0	03	0D	1	0A	34	1	02	_	0

Simple Memory System Cache

Cache

- 16 lines
- 4-byte line size
- Direct mapped

ldx	Tag	Valid	В0	B1	B2	В3	ldx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11	8	24	1	3A	00	51	89
1	15	0	ı	I	_	_	9	2D	0	ı	_	_	ı
2	1B	1	00	02	04	08	Α	2D	1	93	15	DA	3B
3	36	0	_	_	_	_	В	0B	0	_	_	_	_
4	32	1	43	6D	8F	09	С	12	0	_	_	_	_
5	0D	1	36	72	F0	1D	D	16	1	04	96	34	15
6	31	0	-	_	_	_	Е	13	1	83	77	1B	D3
7	16	1	11	C2	DF	03	F	14	0	_	_	_	_

33

Address Translation Example #1

Virtual Address 0x03D4

VPN 0x0F TLBI 3 TLBT 0x03 TLB Hit? Y Page Fault? NO PPN.0x0D

Physical Address

34 15-213, S'08

Address Translation Example #2

Virtual Address 0x0B8F

VPN 0x2E TLBI 2 TLBT 0x0B TLB Hit? NO Page Fault? YES PPN: TBD

Physical Address

Address Translation Example #3

Virtual Address 0x0020

VPN 0x00 TLBI 0 TLBT 0x00 TLB Hit? NO Page Fault? NO PPN:0x28

Physical Address

36 15-213, S'08

Multi-Level Page Tables

Given:

- 4KB (2¹²) page size
- 48-bit address space
- 4-byte PTE

Problem:

- Would need a 256 GB page table!
 - 2⁴⁸ * 2⁻¹² * 2² = 2³⁸ bytes

Common solution

- Multi-level page tables
- Example: 2-level page table
 - Level 1 table: each PTE points to a page table (memory resident)
 - Level 2 table: Each PTE points to a page (paged in and out like other data)

A Two-Level Page Table Hierarchy

38

Translating with a k-level Page Table

39 15-213, S'08

Summary

Programmer's View of Virtual Memory

- Each process has its own private linear address space
- Cannot be corrupted by other processes

System View of Virtual Memory

- Uses memory efficiently by caching virtual memory pages stored on disk.
 - Efficient only because of locality
- Simplifies memory management in general, linking, loading, sharing, and memory allocation in particular.
- Simplifies protection by providing a convenient interpositioning point to check permissions.

40