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All About Memory
How memory worksHow memory works
� Capacitors, magnetic domains
� Row address, column address, row buffer, supercell
� We covered this back in mid-February

What memory What memory doesdoes  
� Store stuff!
� More formally

� fetch: address �  data
� store: address, data �  . 

� The world is imperfect, so...
� fetch: address �  {data  � � }
� store: address, data �  { .   � � }
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Complaints
This kind of memory has problemsThis kind of memory has problems
� It has finite size

� A single program might need more memory than is ava ilable
� Each system has only one memory

� If we will run multiple programs, each program need s a simple way to 
know which memory it should use

� Programmer A doesn't want mistakes made by Programm er B to 
inflict un-debuggable random crashes on her
� We need a way to stop programs from accidentally us ing the wrong 

memory

But it's the only kind of memory we haveBut it's the only kind of memory we have
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Happiness via Mathematics
One simple trick solves all three problemsOne simple trick solves all three problems
� Imagine per-process private memories

� process-id � fetch: (address �  data)
� process-id � store: (address, data �  . )

� This would fix “how to share” and “don't use the wr ong 
memory”
� Surprisingly, it also fixes “finite size”

� Implementation is a little different
� process-id � map: (process-address � {physical-address  � � })
� mfetch: fetch(map(address)) �  {data  � � }
� mstore: store(map(address), data) �  { .   � � }

This mapping trick is the heart of This mapping trick is the heart of virtual memoryvirtual memory  
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Address Spaces
A A linear address space linear address space is an ordered set of contiguous is an ordered set of contiguous 
nonnegative integer addresses:nonnegative integer addresses:

{0, 1, 2, 3, … }{0, 1, 2, 3, … }

A A virtual address spacevirtual address space is a set of N = 2 is a set of N = 2 nn     virtual addressesvirtual addresses::

{0, 1, 2, …, N-1}{0, 1, 2, …, N-1}

A A physical address spacephysical address space is a set of M = 2 is a set of M = 2 mm  (for convenience)  (for convenience) 
physical addressesphysical addresses::

{0, 1, 2, …, M-1}{0, 1, 2, …, M-1}

In a system based on virtual addressing, each byte of main In a system based on virtual addressing, each byte of main 
memory has a physical address memory has a physical address andand a virtual address (or more). a virtual address (or more).
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A System Using Physical Addressing

Used by many digital signal processors and Used by many digital signal processors and 
embedded microcontrollers in devices like phones embedded microcontrollers in devices like phones 
and PDAs.and PDAs.

0:
1:

M -1:

Main memory

Physical 
address

(PA)
CPU

2:
3:
4:
5:
6:
7:

4

Data word

8: ...
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A System Using Virtual Addressing

One of the great ideas in computer science. Used by  One of the great ideas in computer science. Used by  
all modern desktop and laptop microprocessors.all modern desktop and laptop microprocessors.

MMU

Physical
address

(PA)
...

0:
1:

M-1:

Main memory

Virtual
address

(VA)
CPU

2:
3:
4:
5:
6:
7:

4100

Data word

4

CPU chip

Address
translation
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Why Virtual Memory?
(1) VM uses main memory efficiently 

� Main memory is a cache for the contents of a virtua l address 
space stored on disk.

� Keep only active areas of virtual address space in memory
� Transfer data back and forth as needed.

(2) VM simplifies memory management 
� Each process gets the same linear address space.

(3) VM protects address spaces
� One process can’t interfere with another.

� Because they operate in different address spaces.
� User process cannot access privileged information

� Different sections of address spaces have different  permissions.
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(1) VM as a Tool for Caching

Virtual memory Virtual memory is an array of N contiguous bytes is an array of N contiguous bytes 
stored on disk. stored on disk. 

The contents of the array on disk are cached in The contents of the array on disk are cached in 
physical memory (DRAM cache)physical memory (DRAM cache)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated

 Cached

Uncached

Unallocated

 Cached

Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VP's) 
stored on disk

Physical pages (PP's) 
cached in DRAM
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DRAM Cache Organization

DRAM cache organization driven by the enormous DRAM cache organization driven by the enormous 
miss penaltymiss penalty
� DRAM is about 10x slower than SRAM
� Disk is about 100,000x slower than a DRAM

DRAM cache propertiesDRAM cache properties
� Large page (block) size (typically 4-8 KB)
� Fully associative 

� Any virtual page can be placed in any physical page
� This requires a “large” mapping function – differen t from other 

caches
� Highly sophisticated replacement algorithms

� Too complicated and open-ended to be implemented in  hardware
� Write-back rather than write-through
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Page Tables

A A page table page table is an array of page table entries (PTEs) is an array of page table entries (PTEs) 
that maps virtual pages to physical pages.that maps virtual pages to physical pages.
� Kernel data structure in DRAM

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)
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1

0
1
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1
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VP 4

VP 6

VP 7

VP 3
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Page Hits

A A page hitpage hit is a reference to a VM word that is in  is a reference to a VM word that is in 
physical (main) memory.physical (main) memory.

null
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Page Faults
A A page faultpage fault is caused by a reference to a VM word that is not in  is caused by a reference to a VM word that is not in 
physical (main) memory. physical (main) memory. 
� Example: A instruction references a word contained in VP 3, a miss 

that triggers a page fault exception
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Page Faults (cont)

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
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Virtual memory
(disk)

Valid
0

1

1
0
0

1
0

1
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The kernel’s page fault handler selects VP 4 as the  victim and 
replaces it with a copy of VP 3 from disk ( demand paging)
� When the offending instruction restarts, it execute s normally, without 

generating an exception

..
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Servicing a Page Fault

(1) Processor signals disk 
controller
� Read block of length P starting 
at disk address X and store 
starting at memory address Y

(2) Read occurs
� Direct Memory Access (DMA)
� Under control of I/O controller

(3) Controller signals 
completion
� Interrupts processor
� OS resumes suspended process diskDiskdiskDisk

Memory-I/O bus

Processor

Cache

Memory

I/O
controller

Reg

(2) DMA 
Transfer

(1) Initiate Block Read

(3) Read 
Done
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Allocating Virtual Pages

Example: Allocating new virtual page VP5Example: Allocating new virtual page VP5
� Kernel allocates VP 5 on disk and points PTE 5 to t his new 
location.
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Locality to the Rescue

Virtual memory works because of locality.Virtual memory works because of locality.

At any point in time, programs tend to access a set  of At any point in time, programs tend to access a set  of 
active virtual pages called the active virtual pages called the working setworking set. . 
� Programs with better temporal locality will have sm aller 
working sets.

If (working set size < main memory size) If (working set size < main memory size) 
� Good performance after initial compulsory misses.

If (working set size > main memory size ) If (working set size > main memory size ) 
� Thrashing: Performance meltdown  where pages are swapped 
(copied) in and out continuously
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(2) VM as a Tool for Memory Mgmt
Key idea: Each process has its own virtual address 
space
� It can view memory as a simple linear array
� The mapping function scatters addresses through phy sical 
memory
� Carefully chosen mappings simplify memory allocatio n, sharing, 

linking, and loading.

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

VP 1
VP 2

PP 2

Address Translation0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read-only 
library code)

...

...

Virtual 
Address 
Space for 
Process 2:
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Simplifying Sharing and Allocation
Memory allocation

� Each virtual page can be mapped to any physical pag e
� A virtual page can be stored in different physical pages at different 

times – the program never knows

Sharing code and data among processes
� Map virtual pages to the same physical page (PP 7)

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

VP 1
VP 2

PP 2

Address Translation0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read-only 
library code)

...

...

Virtual 
Address 
Space for 
Process 2:
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Simplifying Linking and Loading

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created at runtime by malloc)

User stack
(created at runtime)

Unused0

%esp (stack ptr)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from
executable file

Linking  
� Each program has similar 

virtual address space
�  Code, stack, and shared 

libraries always start at the 
same address.

Loading 
� execve() maps PTEs to the 

appropriate location in the 
executable binary file. 

� The .text and .data 
sections are copied, page by 
page, on demand by the 
virtual memory system. 
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(3)VM as a Tool for Memory Protection

Extend PTEs with permission bits.Extend PTEs with permission bits.

Page fault handler checks these before remapping.Page fault handler checks these before remapping.
� If violated, send process SIGSEGV (segmentation fau lt)

Page tables with permission  bits

Process i:

AddressREAD WRITE
PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

PP 0

Physical memory

Yes

•
•
•

PP 4

PP 6

PP 9

SUP
No

No

Yes

AddressREAD WRITE
PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP
No

Yes

No

VP 0:

VP 1:

VP 2:

PP 2

PP 11
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VM Address Translation

Virtual Address Space
� V = {0, 1, …, N–1}

Physical Address Space
� P = {0, 1, …, M–1}
� M < N    (usually, but >=4 Gbyte on an IA32 possibl e)

Address Translation
� MAP:  V �  P  U  {�}
� For virtual address a:

� MAP(a)  =  a’  if data at virtual address a at physica l address a’ in P
� MAP(a)  = � if data at virtual address a not in physical memor y

� Data stored on disk, or address not valid for this process
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Address Translation with a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

 VIRTUAL ADDRESS

Physical page number (PPN)

PHYSICAL ADDRESS

0p–1pm–1

n–1 0p–1pPage table
 base register

(PTBR)

If valid=0
then page
not in memory
(page fault)

Valid Physical page number (PPN)

The VPN acts 
as index into 
the page table

Page
table

Physical page offset (PPO)
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to L1 cache4) MMU sends physical address to L1 cache

5) L1 cache sends data word to processor5) L1 cache sends data word to processor

VA

1
Processor MMU Cache/

memory

PTEA

PTE

PA

Data

2

3

4

5

CPU chip
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault ex ception4) Valid bit is zero, so MMU triggers page fault ex ception

5) Handler identifies victim, and if dirty pages it  out to disk5) Handler identifies victim, and if dirty pages it  out to disk

6) Handler pages in new page and updates PTE in mem ory6) Handler pages in new page and updates PTE in mem ory

7) Handler returns to original process, restarting faulting instruction.7) Handler returns to original process, restarting faulting instruction.

Page fault exception handler
Exception

VA

1
Processor MMU Cache/

memory

4

5

CPU chip

Disk

Victim page

New page

6

7

PTEA

PTE

2

3
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Integrating VM and Cache

Page table entries (PTEs) are cached in L1 like any  other memory 
word. 
� PTEs may be evicted by other data references
� PTE hit still requires a 1-cycle delay

Solution: Cache PTEs in a small fast memory in the MMU.Solution: Cache PTEs in a small fast memory in the MMU.
� Translation Lookaside Buffer (TLB)

VA
Processor MMU

PTEA

PTE

PA

Data

CPU chip

Memory
PAPA

miss

PTEAPTEA
miss

PTEA 
hit

PA 
hit

Data

PTE

L1
cache
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Speeding up Translation with a TLB

Translation Lookaside Buffer (TLB)
� Small hardware cache in MMU
� Maps virtual page numbers to  physical page numbers
� Contains complete page table entries for small numb er of 
pages
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TLB Hit

A TLB hit eliminates a memory access.A TLB hit eliminates a memory access.

VA
Processor Trans-

lation
Cache/
memoryPA

Data

CPU chip

TLB

VPN PTE

1

2 3

4

5
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TLB Miss

A TLB miss incurs an additional memory access (the A TLB miss incurs an additional memory access (the 
PTE).PTE).

Fortunately, TLB misses are rare. Why?Fortunately, TLB misses are rare. Why?

VA
Processor Trans-

lation
Cache/
memory

PTEA

Data

CPU chip

TLB

VPN PTE

PA

1

2

3

4

5

6
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Simple Memory System Example

Addressing
� 14-bit virtual addresses
� 12-bit physical address
� Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)
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Simple Memory System Page 
Table

� Only show first 16 entries (out of 256)

10D0F0–07

1110E0–06

12D0D11605

0–0C0–04

0–0B10203

1090A13302

117090–01

1130812800

ValidPPNVPNValidPPNVPN
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Simple Memory System TLB
TLB

� 16 entries
� 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet
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Simple Memory System Cache
Cache

� 16 lines
� 4-byte line size
� Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––014F03DFC2111167

D31B7783113E––––0316

15349604116D1DF0723610D5

––––012C098F6D431324

––––00BB––––0363

3BDA159312DA0804020011B2

––––02D9––––0151

8951003A1248112311991190

B3B2B1B0ValidTagIdxB3B2B1B0ValidTagIdx
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Address Translation Example #1

Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PP N: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 3 0x03 Y NO 0x0D

0001010 11010

0 0x5 0x0D Y 0x36
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Address Translation Example #2

Virtual Address 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PP N: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11110001110100

0x2E 2 0x0B NO YES TBD
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Address Translation Example #3

Virtual Address 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PP N: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 NO NO 0x28

0000000 00111

0 0x8 0x28 NO MEM
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Multi-Level Page Tables

Given:
� 4KB (2 12) page size
� 48-bit address space
� 4-byte PTE 

Problem:
� Would need a 256 GB page table!

� 248 * 2-12  * 22 = 238 bytes

Common solution
� Multi-level page tables
� Example: 2-level page table

� Level 1 table: each PTE points to a page 
table (memory resident)

� Level 2 table: Each PTE points to a page 
(paged in and out like other data)

�

�

Level 1
Table

...

Level 2
Tables

...
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A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023 
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs 

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages

1 allocated VM page
for the stack
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Translating with a k-level Page Table

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...
Level 1

page table
Level 2

page table
Level k

page table
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Summary
Programmer’s View of Virtual Memory

� Each process has its own private linear address spa ce
� Cannot be corrupted by other processes

System View of Virtual Memory
� Uses memory efficiently by caching virtual memory p ages 
stored on disk. 
� Efficient only because of locality

� Simplifies memory management in general, linking, l oading, 
sharing, and memory allocation in particular.

� Simplifies protection by providing a convenient 
interpositioning point to check permissions.


