All About Memory

How memory works
= Capacitors, magnetic domains
= Row address, column address, row buffer, supercell

V|rtua| M emOfy = We covered this back in mid-February
March 18, 2007

15-213

“The course that gives CMU its Zip!"

What memory does
= Store stuff!

= More formally

Topics
« fetch: address = data

= Address spaces
= Motivations for virtual memory

« store: address, data = .
= The world is imperfect, so...

* Address translation + fetch: address = {data U ®}
= Accelerating translation with TLBs = store: address, data = {. U @}
class16. ppt 2 15213, 508
Complaints Happiness via Mathematics
This kind of memory has problems One simple trick solves all three problems
= It has finite size = Imagine per-process private memories
= A single program might need more memory thanis ava ilable » process-id = fetch: (address = data)
= Each system has only one memory = process-id = store: (address, data = .)
+ If we will run multiple programs, each program need s a simple way to = This would fix “how to share” and “don't use the wro ng
know which memory it should use memory”
= Programmer A doesn't want mistakes made by Programme rBto = Surprisingly, it also fixes “finite size”
inflict un-debuggable random crashes on her « Implementation is a little different
* We need a way to stop programs from accidentally us ing the wrong + process-id = map: (process-address = {physical-address U ®1})
memory « mfetch: fetch(map(address)) = {data U ®}
Butiit's the only kind of memory we have + mstore: store(map(address), data) = {. U ®}
This mapping trick is the heart of virtual memory
15213, 508 4 15213, 508
Address Spaces A System Using Physical Addressing
Alinear address space is an ordered set of contiguous Main memory
nonnegative integer addresses: o]
Physical
{0,1,2,3,...} address 3
CPU CY L3
_ 4 4
A virtual address space isa setof N =2 " virtual addresses: g
{0,1,2,...N-1} g
A physical address space is a set of M = 2 ™ (for convenience) M-1 El
physical addresses: Dataword
{0,1,2,..., M1}

Used by many digital signal processors and
In & system based on virtual addressing, eachbyte of main embedded microcontrollers in devices like phones

memory has a physical address and a virtual address (or more). and PDAs.

15213, 508 6 15213, 508

1

A System Using Virtual Addressing

CPU chip Main memory
0
Virtual Address Physical 1
address translation | address 2
cPU () MMU ®r 3
— [4100 4 4
6
7

Data word
One of the great ideas in computer science. Used by
all modern desktop and laptop microprocessors.

15213, 508

(1) VM as a Tool for Caching

Virtual memory is an array of N contiguous bytes
stored on disk.

The contents of the array on disk are cached in
physical memory (DRAM cache)

Virtual memory Physical memory

VP 0 [Unallocated

VP 1| Cached \ Empty | PP O
Uncached

PP1

Unallocated Empty
Cached

Uncached >< Eroy
Cached

"y PP 2na1
VP 2.1 [Uncached |
Virtual pages (VP's) Physical pages (PP's)
stored on disk cached in DRAM

15213, 508

Page Tables

A page table is an array of page table entries (PTEs)
that maps virtual pages to physical pages.
= Kernel data structure in DRAM
Physical page
number or

Valid _disk address 1 PPO
PTEO[0 nul

PTE7

1
1
Q
1 S
Q
0
1

-
C0N

Memory resident >~
page table
(ORAM)

15213, 508

Why Virtual Memory?

(1) VM uses main memory efficiently

= Main memory is a cache for the contents of avirtua | address
space stored on disk.

= Keep only active areas of virtual address space in memory
= Transfer data back and forth as needed.

(2) VM simplifies memory management
= Each process gets the same linear address space.

(3) VM protects address spaces
= One process can't interfere with another.
* Because they operate in different address spaces.
= User process cannot access privileged information
» Different sections of address spaces have different permissions.

8 15213, 508
DRAM Cache Organization
DRAM cache organization driven by the enormous
miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 100,000x slower than a DRAM
DRAM cache properties
= Large page (block) size (typically 4-8 KB)
= Fully associative
* Any virtual page can be placed in any physical page
» This requires a “large” mapping function —differen t from other
caches
= Highly sophisticated replacement algorithms
» Too complicated and open-ended to be implemented in hardware
= Write-back rather than write-through
10 15213, 508
Page Hits
A page hit is a reference to a VM word that is in
physical (main) memory.
Physical memory
Virtual address Physical page (DRAM)
number or o
Valid _disk address = PPO
PTEO[0 H:H/ 7
1
L e VP4 PP3
0 .
1 <
0 nul Virtual memory
0 - . (disk)
el]
Memory resident s _
page table

12

15213, 508

Page Faults

A page fault is caused by a reference to a VM word thatisnot in
pﬁysical (main) memory.

» Example: A instruction references a word contained in VP 3, amiss
that triggers a page fault exception
Physical memol
Virtual address Physical page ora)
number or o 0 O
Valid_disk address o
PTEO[0 T =
1
L L P4 PP3
0 »
1 S
0 nul
0 >
PTE7[1 N
Memory resident ~
page table
(DRAM)

13

15213, 508

Servicing a Page Fault

1) Initiate Block Read

(1) Processor signals disk N

controller rocessor
[Rea]

= Read block of length P starting CRea] | (3) Read

at disk address X and store Done
starting at memory address Y
(2) Read occurs ‘

= Direct Memory Access (DMA)
= Under control of I/O controller

(2) DMA
Transfer|

(3) Controller signals
completion
= Interrupts processor
= OS resumes suspended process

15 15213, 508

Locality to the Rescue

Virtual memory works because of locality.

At any pointin time, programs tend to access a set of
active virtual pages called the working set.
= Programs with better temporal locality will have sm aller
working sets.

If (working set size < main memory size)
= Good performance after initial compulsory misses.

If (working set size > main memory size)
= Thrashing: Performance meltdown where pages are swapped
(copied) in and out continuously

17 15213, 508

Page Faults (cont)

The kernel's page fault handler selects VP 4 as the victim and
replaces it with a copy of VP 3 from disk (demand paging)
* When the offending instruction restarts, it execute s normally, without
generating an exception

Physical memory
Virtual address Physical page (ORAM)
number or o
Valid disk address = PPO
PTEO|O null 7
L - P3 PP3
1 —
1 -
: .
0 null ~~_ Virtual memory
0 . ~! (disk)
Prerhs TS
Meiiory resident >
page e
(DRAM)
14

Allocating Virtual Pages

Example: Allocating new virtual page VP5
= Kernel allocates VP 5 on disk and points PTE5tot his new

location. Physical memor
Physical page V(DRAM) 4
number or ’
Valid_disk address 3; PPO
PTEO[D ol 2
1 — P3
n _/ PP3
1 —
o «
o - < Virtual memory
0 e (disk)
prevhi = dl
Memory resident ™~ < [w2]
page table IANUENN
(DRAM) SRR
s
T_ws]
[w7]
16 VR A

(2) VM as a Tool for Memory Mgmt

Key idea: Each process has its own virtual address
space
= It can view memory as a simple linear array
= The mapping function scatters addresses through phy sical
memory
» Carefully chosen mappings simplify memory allocatio n, sharing,

linking, and loading. 0

Virtual Address Translation Physical
Address PP2 Address
Space for Space
Process 1: (DRAM)
(e.g., read-only

Virtual 0 P71 lorary code)
Address x:; -
Space for
Process 2: — M

18 " 15213, 508

Simplifying Sharing and Allocation

Memory allocation
= Each virtual page can be mapped to any physical pag e
« A virtual page can be stored in different physical pages at different
times —the program never knows
Sharing code and data among processes
= Map virtual pages to the same physical page (PP 7)

0
Virtual 0[] AddressTranslation Physical
Address VP 1 PP2 Address
Space for VP2 (Sgs;:m
Process 1: [
(e.g., read-only

Virtual o P71 fiorary code)

VP 1
Address = N
Space for
Process 2: oY M1

19 15213, 508

(3)VM as a Tool for Memory Protection

Extend PTEs with permission bits.

Page fault handler checks these before remapping.

= If violated, send process SIGSEGV (segmentation fau It)
Page tables with permission bits

SUP_READ WRITE _Address Physical memory
VPO No | Yes [No PP6 &
Processi: VP 1| No | Yes | Yes PP4 =] PPO
VP 2| Yes | Yes [Yes PP2 o]] PP 2
PP 4
PP6
SUP_READ WRITE _Address
vP o[No [Yes [No PP9 PP
Processj. VP 1] Yes | Yes | Yes PP6 o« |
VP2 No | Yes | Yes PP1l «+— PP11
21 * 15213, s08

Address Translation with a Page Table

VIRTUAL ADDRESS

Page table v ppl o
base register Virtual page number (VPN) | Virtual page offset, (VPO)

(PTBR)

Valid _Physical page number (PPN)

Page
} table

The VPN acts |
asindexinto | [
the page table

If valid=0
then page

not in memory
(page fault)

m-1 p_pl 0
Physical page number (PPN) | Physical page offset (PPO)

PHYSICAL ADDRESS

23 15213, 508

Simplifying Linking and Loading

Memory
invisible to
R Kernel virtual memory user code
Linking User stack
(created at runtime)

= Each program has similar Yesp (stack ptr)
virtual address space

= Code, stack, and shared 1
libraries always start at the Memory mapped region for
same address. ox shared libraries

Loading brk

» execve() maps PTEsto the Run-time heap
appropriate location in the (created at runtime by malloc)
executable binary file. ReadAwrite segment

. The.. text and . data (.data,.bss) Loaded from
sections are copied, page by Read-only segment executable file
page, on demand by the (.init,.text,.rodata)
virtual memory system. 008043000,

Unused
20 o 15213, 508

VM Address Translation

Virtual Address Space
=V={0,1,.,N41}
Physical Address Space
=P={0,1,.., M1}
*M<N (usually, but >=4 Gbyte on an IA32 possibl e)
Address Translation
=MAP: V= P U {8}
= For virtual address a:
* MAP(a) = a' if data at virtual address a at physica | address a'in P
= MAP(a) = 4 if data at virtual address a notin physical memor y
» Data stored on disk, or address not valid for this process

22 15213, 508

Address Translation: Page Hit
CPU_chip @

PTEA
PTE
Cache/
memory
PA
@
1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to L1 cache
5) L1 cache sends data word to processor
24 15213, 508

Address Translation: Page Fault Integrating VM and Cache

@ PTE
Exception CPU chip
—————————————— Page fault exception handler 1 e
T PTEA
CPU.ch i it

i ® By PTEA preA PTEA

PTEA N miss|

Victim page| Processor |+ MMU Memory

@ PTE PA Py PA

-— MMU @ |Cechel ® Disk s

VA

o) memory ata

New page)| PA
i
® baia o

cache

1) Processor sends virtual address ta MMU Page table entries (PTEs) are cached in L1 like any other memory

2-3) MMU fetches PTE from page table in memory word.
4) Valid bit is zero, so MMU triggers page fault ex ception = PTEs may be evicted by other data references
5) Handler identifies victim, and if dirty pages it out to disk * PTE hit still requires a 1-cycle delay
6) Handler pages in new page and updates PTE in mem ory Solution: Cache PTEs in a small fast memory in the MMU.
257) Handler returns to original process, i faulting i i . 26 T ranslation Lookaside Buffer (TLB) .
15213, 508 15213, 508

Speeding up Translation with a TLB TLB Hit

CPU chip

Translation Lookaside Buffer (TLB)

= Small hardware cache in MMU ‘ e
:
= Maps virtual page numbers to physical page numbers ‘ @ \/PN[PTE! @
= Contains complete page table entries for small numb er of ‘
pages :
| (O] Trans- (O] Cache/
i procssr |2 T | emary
® pata
A TLB hit eliminates a memory access.
27 15213, 508 28 15213, 508
TLB Miss Simple Memory System Example
CPU chip
Addressing
® = 14-bit virtual addresses
@vweN | PTE ; :
= 12-bit physical address
@ = Page size = 64 bytes
PTEA 13 12 1 10 9 8 7 6 5 4 3 2 1 0
LT T T T T T T T T T T T T
Processor Trans- (+————— Cache/
VA lation &S memory VPN VPO
(Virtual Page Number) (Virtual Page Offset)
1 10 9 8 7 6 5 4 3 2 1 o
® LT T T T T T T T T T 11
PPN PPO
AP‘_II'_LEB) miss incurs an additional memory access (the (Physical Page Number) (Physical Page Offset)

29 Fortunately, TLB misses are rare. Why? 15213, S08 30 15213, 508

Simple Memory System Page
Table

= Only show first 16 entries (out of 256)

VPN | PPN | Valid | VPN | PPN | Valid
00 28 1 08 13 1
01 = 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 oc - 0
05 16 1 V5] 2D 1
06 = 0 O0E 1 1
07 — 0 OF 0D 1

31 15213, 508
Simple Memory System Cache
Cache
= 16 lines
= 4-byte line size
= Direct mapped
< cT ><—cl > co >
11 10 9 8 7 6 5 4 3 2 1 0
LT T T T T T T T T T 11
PPN PPO
ldx Tag | Valid BO B1 B2 B3 ldx Tag | Valid BO B1 B2 B3
0 19 1 99 1 23 1 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 08 A 2D 1 93 15 D 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 — — — —
33 15213, 508
Address Translation Example #2
Virtual Address 0x0B8F
< BT >< LBl >
113 12 1 10 9 8 7 6 5 4 3 2 1)
lofolaTolaTalaTolololaTaTaT1]
VPN VPO
veN 02 Tigi 2 TiBT 9X0B 118 Hit? NO page Fault? YESPp NTED

35

Physical Address

><— co >

15213, 508

Simple Memory System TLB

TLB
= 16 entries
= 4-way associative
< TLBT >< TLBI >
13 12 1 10 9 8 7 6

5 4 3 2 1 0

VPN VPO
set | Tag | PPN | valid | Tag | PPN | valid | Tag | PPN | valid | Tag | PPN | valid
o | o3 | - 0o Joo oo | 1 [oo]| - o o7 o2]| 1
1|03 |20] 1 fo2]| - o | o4 | - o |oa | - o
2 | o2 | - o | os | - o | o6 | - o | o3 | - 0
3 | o7 [- 0o Jos|oo | 1 Joala]| 1 fo]| - 0
32 15213, 508

Address Translation Example #1

Virtual Address 0x03D4

TLBT —>< T8I >
13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oToTololaTaTaTalolalol1ToT0]

VPN VPO

veN _OX0F 1ig) 3 TiBT 0X03 TIBHI? Y Page Faut? _NOpp NOXOD
Physical Address
«——cr ><—— c—><co >
11 10 9 8 7 6 5 4 3 2 1 0
[ofolififof1]ol1]o]1]0o]
PPN PPO
offset_ 0 cI.0x5 ¢T0x0D Hit? _Y Byte: _0x36

34 15213, 508

Address Translation Example #3

Virtual Address 0x0020
< TBT — < TLBI >
12 1 10 9 8 7

13 6 5 4 3 2 1 0
[oToToloToToloTo s olololoT0]

VPN VPO

veN 900 ig) 0 1Bt 0X00 118 Hit? NO page Fault? _NOpp NOX28
Physical Address

D —— cl ><—co >

1 10 9 8 7 6 5 4 3 2 1 o
[1Tol1olofol1To oo o o]

PPN PPO

offset_0 €I 0x8 cT 0x28 Hit? NO Byte: _MEM

36 15213, 508

Multi-Level Page Tables

Given:

= 4KB (2% page size
= 48-bit address space

= 4-byte PTE

Problem:

= Would need a 256 GB page table!
2 2% 212 % 22 = 2% bytes

Common solution
= Multi-level page tables
= Example: 2-level page table

= Level 1 table:

each PTE points to a page

table (memory resident)

= Level 2 table:
(paged in and
37

Each PTE points to a page
out like other data)

Level 2
Tables
Level 1
Table
15213, 508 38

Translating with a k-level Page Table

n1

VIRTUAL ADDRESS

b1 3
1 VPN 1 VPN 2 .. |[jveNk [vPo
—
Level 1 Level2 Levelk
page wle | _page mble page table

39

m1

PHYSICAL ADDRESS

15213, 508 40

A Two-Level Page Table Hierarchy

Level 1
page table

PTEO

PTEL

PTE 2 (null)

PTE 3 (null)

PTE 4 (nul)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE8

(1K -9)
null PTES

-

Level 2 Virtual
page tables memory
VPO
PTEO
/ VP 1023
PTE 1023 VP 1024
VP 2047
PTEO
PTE 1023
Gap
1023 null
PTES
PTE 1023 1023
pages
VP 9215

Programmer’s View of Virtual Memory
= Each process has its own private linear address spa
= Cannot be corrupted by other processes

System View of Virtual Memory

= Uses memory efficiently by caching virtual memory p

stored on disk.

» Efficient only because of locality
= Simplifies memory management in general, linking, |
sharing, and memory allocation in particular.
= Simplifies protection by providing a convenient
interpositioning point to check permissions.

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

15213, 508

ce

ages

oading,

15213, 508

