15-213

“The course that gives CMU its Zip!”

Exceptional Control Flow
Part Il
March 16, 2008

Topics
= Process Hierarchy
= Shells
= Signals
= Non-local jumps

class15.ppt

The World of Multitask ing

System Runs Many Processes Concurrently

= Process: executing program

» State consists of memory image + register values + program
counter

= Continually switches from one process to another
» Suspend process when it needs I/O resource or timer event occurs
* Resume process when I/O available or given scheduli ng priority

= Appears to user(s) as if all processes executing
simultaneously
» Even though most systems can execute only one proce ss at a time
» Except possibly with lower performance than if runn ing alone

3 15-213, S'08

Unix Process Hierarchy

5 15-213, S'08

ECF Exists at All Levels of a System

Exceptions
= Hardware and operating system kernel
software Previous Lecture
Concurrent processes

= Hardware timer and kernel software

Signals

= Kernel software This Lecture

Non-local jumps
= Application code

2 15-213, S'08

Programmer’s Model of Multitasking

Basic Functions
=fork() spawns new process
= Called once, retumns twice
=exit() terminates own process
* Called once, never returns
* Putsitinto “zombie” status
=wait() and waitpid() wait for and reap terminated children

=execl() and execve() runa new program in an existing
process
= Called once, (normally) never returns

Programming Challenge
= Understanding the nonstandard semantics of the func tions

= Avoiding improper use of system resources
» E.g. “Fork bombs” can disable a system.

4 15-213, S'08

The ps command

Unix> ps aux -w --forest (output edited to fit slide)

G
3

PIDTTY STAT COMMAND
S ink[3

¥

8333333333557982288338428

6 15-213, S'08

The ps Command (cont.)

USER _PIDTTY STAT
roat o

891yl S Ibniog

mn somn S Neely X

wot 9217 SL T\ /etoiX1UX auth Aisrl/agXauthority :0

O ot
n e + £

M0 Stepn 3 R !

agn 1184 piS0 S \fu

agn 1212ps0 S _lusthiocallbinAvisha 0 -t

agn 336 ps0 S aspel -a-S

an Helpso _ /Bin/sh lusthocallibexecimaz

agn 1204 8pS0 S st

agn 1207 8pSi0 S \

agn 12088pSi0 S

agn 12098pSi0 S

agn 17814 8pisio S |

agn 2469 s

= S

agn

S S 8 s

agn java_m

agn 959yl S _ binish ustlocalibereckdeninsa

agn 1020ty S _ kwrapper ksmserver

Some PC Start-up Details

Boot Disk / CD / Floppy

Oxfffffff
0xffff0000

Some PC Start-up Details

Boot Disk / CD / Floppy
CPU
Start

Execution at

Oxfffffffo
Oxffffffft
0xffff0000
0x00000000

11

0x00000000

15-213, S'08

BIOS ROM

15-213, 508

BIOS ROM

15-213, S'08

Unix Startup: Step 1

=

aswn

Pushing reset button loads the ~ PCwith the address of a small
bootstrap program.

Bootstrap program loads the boot block (disk blo ck 0).

Boot block program loads kernel binary (e.g., /bootvmlinux)
Boot block program passes control to kernel.

Kernel handcrafts the data structures for proces s0.

« Process 0: handcrafted kernel process

Process 0 forks child process 1

@ Child process 1 execs /sbin/init

15-213, S'08

Some PC Start-up Details

Boot Disk / CD / Floppy
Power on/Reset
Oxfffffff
{0000 BIOS ROM
0x00000000
10 15-213, S'08
Some PC Start-up Details
Boot Disk / CD / Floppy
Oxfffffff
Oxfff0000 BIOS ROM
Copy
Master Boot Record
MBR]
into memory
0x00007c00
0x00000000
12 15-213, 508

Some PC Start-up Details Some PC Start-up Details

Boot Disk / CD / Floppy

Boot Disk / CD / Floppy
0000 BIOS ROM 0000 BIOS ROM
LILO (or GRUB)
BIOS verifes MER is loaded from
?)';Olj)llj)??so‘g active partition
0x00007c00 0x00007c00
0x00000000 0x00000000
13 15-213, 508 14 15-213, 508
Some PC Start-up Details Some PC Start-up Details
Boot Disk / CD / Floppy Boot Disk / CD / Floppy
0000 BIOS ROM 0000 BIOS ROM
CPU executes LILO
The Linux kernel is
loaded and
begins initialization
0x00007c00 0x00007c00
0x00000000 0x00000000
15 15-213, 508 16 15-213, 508
Unix Startup: Step 2 Unix Startup: Step 3

e] <>

init forks and execs

daemons per

letc/inittab , and forks The getty process

Daemons and execsa getty program « execs a login
ftpd, httpd for the console program

17 15-213, S08 18

15-213, 508

Unix Startup: Step 4

login reads login-1D and passwd.
@ if OK, itexecsa shell.
if not OK, it execs another ~ getty

In case of login on the console
xinit may be used instead of
a shell to start the window manger

19 15-213, S'08

Simple Shell eval Function

void eval(char *cmdline)

char ’argv[MAXARGS] 1*argy for execve() */
1+ should the job run b gorfg?*/
pm (p\d I+ process id */

bq = parseline(emine. am\n
i Butht_command
if (pi chk()) = 0)(7% child funs user job)
It (execve(argv{U], argv, environ) < U) {
printf(“%s: Command not found.\n", argv[0);
exit(0);

}

if (1bg) {_/* parent waits for fg job to terminat e
int status:
if (waitpid(pid, &status, 0) < 0)
unix_error(*waitfg: waitpid error’);

/* otherwise, don't wait for bg job */
pnmf(s %s", pid, cmdline);

21 15-213, S'08

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs

But what about background jobs?
= Will become zombies when they terminate.
= Will never be reaped because shell (typically) will not
terminate.
= Will create a memory leak that could theoretically run the
kernel out of memory
* Modern Unix: once you exceed your ~ process guota, your shell can't
run any new commands for you; fork() returns -1
% limit maxproc ~ # csh syntax
maxproc 3574
$ ulimit -u # bash syntax
3574

23 15-213, S'08

Shell Programs

A shell is an application program that runs programs on

behalf of the user.
» sh —Ancient Unix shell (Stephen Bourne, AT&T BellLa bs, 1977)
= csh —BSD Unix “C shell”
= tcsh —csh enhanced at CMU and elsewhere
» bash —“Bourne-Again” Shell
int main()

char cmdline[MAXLINE];

while (1)(

ad "/ P
pnn(f(Execution is a sequence

Fgels(cmd\me MAXLINE, stdin); of read/evaluate steps
if (feof(stdin))
exit(0);

I* evaluate */

eval(cmdiine);

20 15-213, S'08

“Background Job"?
What is a “background job"?

= Users generally run one command at a time
= Type command, read output, type another command

= Some programs run “for a long time”
» Example: “delete this file in two hours”

% sleep 7200; rm /tmp/junk # shell stuck for 2 hou s
= A “background” job is a process we don't want to wai t for
% (sleep 7200 ; rm /tmp/junk) &
[1] 907
% # ready for next comman d
22 15-213, 508

ECF to the Rescue!

Problem
= The shell doesn't know when a background job will fi nish
= By nature, it could happen at any time
= The shell's regular control flow can't reap exited ba ckground
processes in a timely fashion
* Regular control flow is “wait until running job com pletes, then reap
it”
Solution: Exceptional control flow

= The kernel will interrupt regular processing to ale rtus when a
background process completes

= In Unix the alert mechanism is called a signal.

24 15-213, S'08

Signals

A signal is a small message that notifies a process
that an event of some type has occurred in the
system.
= Kernel abstraction for exceptions and interrupts.

= Sent from the kernel (sometimes at the requestof a nother
process) to a process.

= Different signals are identified by small integer | D's (1-30)
= The only information in a signal is its ID and the fact that it

arrived.
ID Name Default Action Corresponding Event
2 |SIGINT Terminate Interrupt from keyboard (ctl-c)
9 | SIGKILL | Terminate Kill program (cannot override or ignore)
11 | SIGSEGV | Terminate & Dump | Segmentation violation
14 | SIGALRM | Terminate Timer signal
17 | SIGCHLD | Ignore Child stopped or terminated
25 15-213, 508

Signal Concepts (continued)

Receiving a signal

= A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal.

= Three possible ways to react:
+ Ignore the signal (do nothing)
» Terminate the process (with optional core dump).
» Catch the signal by executing a user-level function calle d a signal

handler .

» Akin to a hardware exception handler being called i n response to
an asynchronous interrupt.

27 15-213, S'08

Signal Concepts

Kernel maintains pending and blocked bit vectors in
the context of each process.
=pending -represents the set of pending signals
» Kernel sets bit kin pending whenever a signal of type k is
delivered.
» Kernel clears bitk in pending whenever a signal of type k is
received
= blocked -represents the set of blocked signals
» Can be set and cleared by the application using the sigprocmask
function.

29 15-213, S'08

Signal Concepts

Sending a signal
= Kernel sends (delivers) a signaltoa destination process by
updating some state in the context of the destinati on process.
= Kernel sends a signal for one of the following reas ons:
» Kernel has detected a system event such as divide-b y-zero
(SIGFPE) or the termination of a child process (SIG ~ CHLD)
» Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destinat ion process.

26 15-213, S'08

Signal Concepts (continued)

A signalis pending if it has been sent but not yet
received.
= There can be at most one pending signal of any part icular type.
= Important: Signals are not queued
« If a process has a pending signal of type k, then's ubsequent signals
of type k that are sent to that process are discard ed.
A process can block the receipt of certain signals.
= Blocked signals can be delivered, but will not be r eceived until
the signal is unblocked.

A pending signal is received at most once.

28 15-213, S'08

Process Groups

Every process belongs to exactly
one process group

d=10
poid=10

Back-
ground
job#1

pid=40
poid=40

Background Background
process group 32 process group 40

getpgrp() —Return process
group of current process

setpgid() - Change process

Foreground
process group 20 group of a process

30 15-213, S'08

Sending Signals with kil Program

kil program sends

arbitrary signal to a linux> fforks 16
process or process linux> Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817
group ild2: pi pgrp:
linux> ps
PID TTY TIME CMD
24788 pts/2_00:
Examples 4818
= kill -9 24818 4819 pis/ o
. 4820 pis/200:00:00 ps
Send SIGKILL to linuwe kill-9 -24817
process 24818 linux> ps
« kill -9 —24817 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
« Send SIGKILL to every 24823 pts/2 00:00:00 ps
process in process linwx>
group 24817.
31 15-213, S'08

Receiving Signals

Suppose kernel is returning from an exception
handler and is ready to pass control to process p.
Kernel computes pnb = pending & ~blocked
= The set of pending nonblocked signals for process P
If (pnb==0)
= Pass control to next instruction in the logical flo w for p.
Else

= Choose least nonzero bit kin pnb and force process p to
receive signal k.
= The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb.
= Pass control to next instruction in logical flow fo rp.
33

15-213, 508

Installing Signal Handlers

The signal function modifies the default action
associated with the receipt of signal signum :
= handler_t *signal(int signum, handler_t *handler)

Different values for handler
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type
signum .
= Otherwise, handler is the address of a signal handler
» Called when process receives signal of type signum
» Referred to as “ installing” the handler.
» Executing handler is called “ catching” or “ handling” the signal.
* When the handler executes its return statement, con trol passes back to
instruction in the control flow of the process that was interrupted by
receipt of the signal.

35 15-213, S'08

Sending Signals with kil Function

void fork12()

pid_t pid[N];

int, status;

for (1=0;1 < N; i++)
if (pidfi] = fork() == 0)

while(1); /* Child infinite loop */

I+ Parent terminates the chid processes */
or (1=0;1<N;i++){
printf(*Killing process %d\n", pidfi);
Killpicfi], SIGINT);

I+ Parent reaps terminated children */
for (=03 <N; i++){
pid_t wpid = wait(&child_status);
T (WIFEXTTED(CNIG_SEUS)y
printf(‘Child 9%d teminated with ex status %d\n",
wpid, WEXITSTATUS child_status));

inti(Child 9%d terminated abnormaliy\n", wpid);

32 15-213, S'08

Default Actions

Each signal type has a predefined default action,
which is one of:

= The process terminates

= The process terminates and “dumps core”.

= The process stops until restarted by a SIGCONT sign al.
= The process ignores the signal.

15-213, 508

Signal Handling Example

vaid int_handler(int sig)

printf(*Process %d received signal %dn",
getpid(), sig);

exit(0).
linux> forks 13
pacibid ey Kiling process 24973
Killing process 24974
pid_tpidNg; Killing process 24975
inti, child_status; R
signal(SIGINT, int_handier); Killing process 24977
Process 24977 received signal 2
} o Child 24977 terminated with exit status 0

Process 24976 received signal 2

Child 24976 terminated with exit status 0
Process 24975 received signal 2

Child 24975 terminated with exit status 0
Process 24974 received signal 2

Child 24974 terminated with exit status 0
Process 24973 received signal 2

Child 24973 terminated with exit status 0
linux>

36 15-213, S'08

Signals Handlers as Concurrent Flows

A signal handler is a separate logical flow (thread) that
runs concurrently with the main program
= “Concurrently” in the “non-sequential” sense

Process A Process A Process B
while (1) handler(){
; -
Time |
37 15-213, S'08

Signal Handler Funkiness

Pending signals are

int ccount = 0;
void child_handler(int sig) not queued
MiETSis = For each signal type,
pid_t pid = wait(&chid_status); kernel has one bit
coount--; indicati
printf("Received signal %d from process %d\rt, indicating whether or
sig, pid); not signal is pending
= Even if multiple
FadEncR0 processes have sent
pid_t pid[N]; this signal
int, child_status;
cocount = N;

signal(SIGCHLD, child_handler);
for (1= 0;1<N; i++)

while (ccount > 0)
pause()7* Suspend until signal occurs */

)

39 15-213, S'08

Signal Handler Funkiness (Cont.)

Signal arrival during long system calls (e.g., read())

Signal handler interrupts read() call
= Linux: upon return from signal handler, the read() callis
restarted automatically
= Some other flavors of Unix can cause the read() call to fail
with an EINTER error number (errno)
in this case, the application program can restart t he slow
system call

Subtle differences like these complicate the writin g of
portable code that uses signals.

41 15-213, S'08

Another View of Signal Handlers as
Concurrent Flows

'
Process A Process B
code, ! code,

Signal delivered —* w,,l

! user code (main)

|
i
\\ kemel code } context switch
: user code (main)
- kemel code } context switch
:
1
)
——
l i
|

Signal received

kemel code } context switch

user code (main)

38 15-213, S'08

Living With Non-Queuing Signals
Each signal is pending only once
= You may get SIGCHLD once if many children exit “at once”

Handler must check for all terminated jobs
= Typically loop with wait()
void child_handler2(int sig)

int child_status;
pid_t pid;
while ((pid = waitpid(-1, &child_status, WNOHAN G))>0){

printf('Received signal %d from process %d\n", sig, pid);
}

I/md fork15()
{

signal(SIGCHLD, child_handler2);

40 15-213, S'08

A Program That Reacts to
Externally Generated Events (ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {

printf("You think hitting ctrl-c will stop the bo mb2n");
sleep(2);
printf("Well...");
flush(stdout);
sleep(1);
printf("OK\n");
exit(0);

}
main
signal(SIGINT, handler); /* installs cti-c handle (73]
while(1) {
}

}

42 15-213, S'08

A Program That Reacts to Internally
Generated Events

#include <stdio.h>

main() {
#include <signal.h> signal(SIGALRM, handler);
alarm(1); /* send SIGALRM in
int beeps = 0; 1 second */
1* SIGALRM handler */ while (1) {
void handler(int sig) { /* handler returns here */
printf("BEEP\"); }
flush(stdout); }
if (++beeps < 5)
alarm(1); linux> a.out
else { BEEP
printi("BOOMNN’); BEEP
exit(0); BEEP
} BEEP
¥ BEEP
BOOM!
bass>
43 15-213, S'08

setjmp/longjmp (cont)

void longjmp(jmp_buf j, int i)

= Meaning:
« return from the setimp remembered by jump buffer j again
» _.this time retuming i instead of 0

= Called after setjmp
= Called once, but never returns

longjmp Implementation:
= Restore register context from jump buffer j
= Set %eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j .

45 15-213, S'08

Limitations of Nonlocal Jumps

Works within stack discipline

= Can long jump to environment of a function only if it has been
called but not yet completed
{Pl() After longjmp
if (setimp(env)) {
/* Long Jump to here */
Yelse {
P2();
}
}
P2()
{...P20;...P30;}
P3() Before longjmp
longjmp(env, 1);
47 i 15-213, 508

Nonlocal Jumps: setjmp/longjmp

Powerful (but dangerous) user-level mechanism fort ransferring
control to an arbitrary location.

» Controlled to way to break the procedure call / ret urn discipline
» Useful for error recovery and signal handling

int setjimp(jmp_buf)
* Must be called before longjmp()
» Identifies a return site for a subsequent longjmp()
= Called once, returns one or more times
Implementation:

* Remember where you are by storing the current regi ster context,
stack pointer, and PC value in jmp_buf.
* Return 0

44 15-213, S'08

setjmp /longjmp Example

#include <setjmp.h>
jmp_buf buf;

main() {
if (sefimp(buf) 1= 0) {
printf("back in main due to an error\n");

else
printf(*first time throughin");
p1(); /* pl calls p2, which calls p3*/
}

P30 {
<error checking code>
if (error)

longjmp(buf, 1)

46 15-213, S'08

Limitations of Long Jumps (cont.)
Works within stack discipline

= Can only long jump to environment of function that has been
called but not yet completed

P1
jmp_buf env;
PO P2
env
P2(); P3();
2 0); P30): At setimp
P2() P1
if (setimp(env)) { env
1 Long Jump to here */ e
}
} P2 returns P2
P3() -
3
longjmp(env, 1);
} At longjmp

48 15-213, S'08

Putting It All Together: A Program
That Restarts Itself When ctrl-c

#include <stdio.h> while(1) {
#include <signal.h> sleep(l);
#include <setimp.h> printt(*processing...\n");
sigimp_buf buf; }
void handler(int sig) {
siglongjmp(buf, 1); bass> a.out
} starting
processing...
main() { processing...
signal(SIGINT, handler); restarting +——cCtrl-c
processing...
if (Isigsetimp(buf, 1)) processing... e
printf(*starting\n"); restarting —Cu
else processing...
printf(‘restartingin”);
49 15-213, 508

Summary

Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler

Some caveats
= Very high overhead
* >10,000 clock cycles
* Use only for exceptional conditions
= Signals don’t have queues
» Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow
within process
= Within constraints of stack discipline

50 15-213, S'08

