
Exceptional Control Flow
Part II

March 16, 2008
TopicsTopics

� Process Hierarchy
� Shells
� Signals
� Non-local jumps

class15.ppt

15-213
“The course that gives CMU its Zip!”

2 15-213, S’08

ECF Exists at All Levels of a System

ExceptionsExceptions
� Hardware and operating system kernel

software

Concurrent processesConcurrent processes
� Hardware timer and kernel software

SignalsSignals
� Kernel software

Non-local jumpsNon-local jumps
� Application code

Previous Lecture

This Lecture

3 15-213, S’08

The World of Multitask ing

System Runs Many Processes ConcurrentlySystem Runs Many Processes Concurrently
� Process: executing program

� State consists of memory image + register values + program
counter

� Continually switches from one process to another
� Suspend process when it needs I/O resource or timer event occurs
� Resume process when I/O available or given scheduli ng priority

� Appears to user(s) as if all processes executing
simultaneously
� Even though most systems can execute only one proce ss at a time
� Except possibly with lower performance than if runn ing alone

4 15-213, S’08

Programmer’s Model of Multitasking

Basic FunctionsBasic Functions
� fork() spawns new process

� Called once, returns twice
� exit() terminates own process

� Called once, never returns
� Puts it into “zombie” status

� wait() and waitpid() wait for and reap terminated children
� execl() and execve() run a new program in an existing

process
� Called once, (normally) never returns

Programming ChallengeProgramming Challenge
� Understanding the nonstandard semantics of the func tions
� Avoiding improper use of system resources

� E.g. “Fork bombs” can disable a system.

5 15-213, S’08

Unix Process Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

6 15-213, S’08

The ps command

USER PID TTY STAT COMMANDUSER PID TTY STAT COMMAND
root 1 ? S init [3]root 1 ? S init [3]
root 2 ? SW [keventd]root 2 ? SW [keventd]
root 3 ? SWN [ksoftirqd_CPU0]root 3 ? SWN [ksoftirqd_CPU0]
root 4 ? SW [kswapd]root 4 ? SW [kswapd]
root 5 ? SW [bdflush]root 5 ? SW [bdflush]
root 6 ? SW [kupdated]root 6 ? SW [kupdated]
root 9 ? SW< [mdrecoveryd]root 9 ? SW< [mdrecoveryd]
root 12 ? SW [scsi_eh_0]root 12 ? SW [scsi_eh_0]
root 397 ? S /sbin/pump -i eth0root 397 ? S /sbin/pump -i eth0
root 484 ? S< /usr/local/sbin/afsd -nosettimeroot 484 ? S< /usr/local/sbin/afsd -nosettime
root 533 ? S syslogd -m 0root 533 ? S syslogd -m 0
root 538 ? S klogd -2root 538 ? S klogd -2
rpc 563 ? S portmaprpc 563 ? S portmap
rpcuser 578 ? S rpc.statdrpcuser 578 ? S rpc.statd
daemon 696 ? S /usr/sbin/atddaemon 696 ? S /usr/sbin/atd
root 713 ? S /usr/local/etc/nanny -init /etc/nanny.confroot 713 ? S /usr/local/etc/nanny -init /etc/nanny.conf
mmdf 721 ? S _ /usr/local/etc/deliver -b -csmtpcmummdf 721 ? S _ /usr/local/etc/deliver -b -csmtpcmu
root 732 ? S _ /usr/local/sbin/named -froot 732 ? S _ /usr/local/sbin/named -f
root 738 ? S _ /usr/local/sbin/sshd -Droot 738 ? S _ /usr/local/sbin/sshd -D
root 739 ? S<L _ /usr/local/etc/ntpd -nroot 739 ? S<L _ /usr/local/etc/ntpd -n
root 752 ? S<L | _ /usr/local/etc/ntpd -nroot 752 ? S<L | _ /usr/local/etc/ntpd -n
root 753 ? S<L | _ /usr/local/etc/ntpd -nroot 753 ? S<L | _ /usr/local/etc/ntpd -n
root 744 ? S _ /usr/local/sbin/zhm -n zephyr-1.srv.cmroot 744 ? S _ /usr/local/sbin/zhm -n zephyr-1.srv.cm
root 774 ? S gpm -t ps/2 -m /dev/mouseroot 774 ? S gpm -t ps/2 -m /dev/mouse
root 786 ? S crondroot 786 ? S crond

Unix> ps aux -w --forest (output edited to fit slide)

7 15-213, S’08

The ps Command (cont.)

USER PID TTY STAT COMMANDUSER PID TTY STAT COMMAND
root 889 tty1 S /bin/login -- agnroot 889 tty1 S /bin/login -- agn
agn 900 tty1 S _ xinit -- :0agn 900 tty1 S _ xinit -- :0
root 921 ? SL _ /etc/X11/X -auth /usr1/agn/.Xauthority :0root 921 ? SL _ /etc/X11/X -auth /usr1/agn/.Xauthority :0
agn 948 tty1 S _ /bin/sh /afs/cs.cmu.edu/user/agn/.xinitrcagn 948 tty1 S _ /bin/sh /afs/cs.cmu.edu/user/agn/.xinitrc
agn 958 tty1 S _ xterm -geometry 80x45+1+1 -C -j -ls -nagn 958 tty1 S _ xterm -geometry 80x45+1+1 -C -j -ls -n
agn 966 pts/0 S | _ -tcshagn 966 pts/0 S | _ -tcsh
agn 1184 pts/0 S | _ /usr/local/bin/wish8.0 -f /usragn 1184 pts/0 S | _ /usr/local/bin/wish8.0 -f /usr
agn 1212 pts/0 S | | _ /usr/local/bin/wish8.0 -f agn 1212 pts/0 S | | _ /usr/local/bin/wish8.0 -f
agn 3346 pts/0 S | | _ aspell -a -Sagn 3346 pts/0 S | | _ aspell -a -S
agn 1191 pts/0 S | _ /bin/sh /usr/local/libexec/mozagn 1191 pts/0 S | _ /bin/sh /usr/local/libexec/moz
agn 1204 8 pts/0 S | _ /usr/local/libexec/mozillaagn 1204 8 pts/0 S | _ /usr/local/libexec/mozilla
agn 1207 8 pts/0 S | _ /usr/local/libexec/mozagn 1207 8 pts/0 S | _ /usr/local/libexec/moz
agn 1208 8 pts/0 S | | _ /usr/local/libexecagn 1208 8 pts/0 S | | _ /usr/local/libexec
agn 1209 8 pts/0 S | | _ /usr/local/libexecagn 1209 8 pts/0 S | | _ /usr/local/libexec
agn 17814 8 pts/0 S | | _ /usr/local/libexecagn 17814 8 pts/0 S | | _ /usr/local/libexec
agn 2469 pts/0 S | _ usr/local/lib/Acrobatagn 2469 pts/0 S | _ usr/local/lib/Acrobat
agn 2483 pts/0 S | _ java_vmagn 2483 pts/0 S | _ java_vm
agn 2484 pts/0 S | _ java_vmagn 2484 pts/0 S | _ java_vm
agn 2485 pts/0 S | _ java_vmagn 2485 pts/0 S | _ java_vm
agn 3042 pts/0 S | _ java_vmagn 3042 pts/0 S | _ java_vm
agn 959 tty1 S _ /bin/sh /usr/local/libexec/kde/bin/staagn 959 tty1 S _ /bin/sh /usr/local/libexec/kde/bin/sta
agn 1020 tty1 S _ kwrapper ksmserveragn 1020 tty1 S _ kwrapper ksmserver

8 15-213, S’08

Unix Startup: Step 1

init [1]

[0] Process 0: handcrafted kernel process

Child process 1 execs /sbin/init

1. Pushing reset button loads the PC with the address of a small
 bootstrap program.
2. Bootstrap program loads the boot block (disk blo ck 0).
3. Boot block program loads kernel binary (e.g., /boot/vmlinux)
4. Boot block program passes control to kernel.
5. Kernel handcrafts the data structures for proces s 0.

Process 0 forks child process 1

9 15-213, S’08

Some PC Start-up Details

CPU

0xffffffff

0x00000000

Boot Disk / CD / Floppy

BIOS ROM
0xffff0000

10 15-213, S’08

Some PC Start-up Details

CPU

0xffffffff

0x00000000

Boot Disk / CD / Floppy

BIOS ROM
0xffff0000

Power on/Reset

11 15-213, S’08

Some PC Start-up Details

CPU

0xffffffff

0x00000000

Boot Disk / CD / Floppy

BIOS ROM
0xffff0000

Start
Execution at
0xfffffff0

12 15-213, S’08

Some PC Start-up Details

CPU

0xffffffff

0x00000000

Boot Disk / CD / Floppy

BIOS ROM
0xffff0000

0x00007c00

Copy
Master Boot Record

(MBR)
into memory

13 15-213, S’08

Some PC Start-up Details

CPU

0xffffffff

0x00000000

Boot Disk / CD / Floppy

BIOS ROM
0xffff0000

0x00007c00

BIOS verifies MBR
and jumps to
0x00007c00

14 15-213, S’08

Some PC Start-up Details

CPU

0xffffffff

0x00000000

Boot Disk / CD / Floppy

BIOS ROM
0xffff0000

0x00007c00

LILO (or GRUB)
is loaded from
first sector of

active partition

15 15-213, S’08

Some PC Start-up Details

CPU

0xffffffff

0x00000000

Boot Disk / CD / Floppy

BIOS ROM
0xffff0000

0x00007c00

CPU executes LILO

16 15-213, S’08

Some PC Start-up Details

CPU

0xffffffff

0x00000000

Boot Disk / CD / Floppy

BIOS ROM
0xffff0000

0x00007c00

The Linux kernel is
loaded and

begins initialization

17 15-213, S’08

Unix Startup: Step 2

init [1]

[0]

gettyDaemons
e.g. ftpd, httpd

/etc/inittab
init forks and execs
daemons per
/etc/inittab , and forks
and execs a getty program
for the console

18 15-213, S’08

Unix Startup: Step 3

init [1]

[0]

The getty process
execs a login
program

login

19 15-213, S’08

Unix Startup: Step 4

init [1]

[0]

login reads login-ID and passwd.
if OK, it execs a shell.
if not OK, it execs another getty

tcsh

In case of login on the console
xinit may be used instead of
a shell to start the window manger

20 15-213, S’08

Shell Programs
A A shellshell is an application program that runs programs on is an application program that runs programs on
behalf of the user.behalf of the user.
� sh – Ancient Unix shell (Stephen Bourne, AT&T Bell La bs, 1977)
� csh – BSD Unix “C shell”
� tcsh – csh enhanced at CMU and elsewhere
� bash – “Bourne-Again” Shell

int main()
{
 char cmdline[MAXLINE];

 while (1) {
/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
 exit(0);

/* evaluate */
eval(cmdline);

 }
}

Execution is a sequence
of read/evaluate steps

21 15-213, S’08

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* argv for execve() */
 int bg; /* should the job run in b g or fg? */
 pid_t pid; /* process id */

 bg = parseline(cmdline, argv);
 if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */
 if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

 }
}

if (!bg) { /* parent waits for fg job to terminat e */
 int status;

 if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");

}
else /* otherwise, don’t wait for bg job */
 printf("%d %s", pid, cmdline);

 }
}

22 15-213, S’08

“Background Job”?

What is a “background job”?What is a “background job”?

� Users generally run one command at a time
� Type command, read output, type another command

� Some programs run “for a long time”
� Example: “delete this file in two hours”

% sleep 7200; rm /tmp/junk # shell stuck for 2 hou rs

� A “background” job is a process we don't want to wai t for
% (sleep 7200 ; rm /tmp/junk) &

[1] 907

% # ready for next comman d

23 15-213, S’08

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs .Shell correctly waits for and reaps foreground jobs .

But what about background jobs?But what about background jobs?
� Will become zombies when they terminate.
� Will never be reaped because shell (typically) will not

terminate.
� Will create a memory leak that could theoretically run the

kernel out of memory
� Modern Unix: once you exceed your process quota, your shell can't

run any new commands for you; fork() returns -1
% limit maxproc # csh syntax

maxproc 3574

$ ulimit -u # bash syntax

3574

24 15-213, S’08

ECF to the Rescue!

ProblemProblem
� The shell doesn't know when a background job will fi nish
� By nature, it could happen at any time
� The shell's regular control flow can't reap exited ba ckground

processes in a timely fashion
� Regular control flow is “wait until running job com pletes, then reap

it”

Solution: Exceptional control flowSolution: Exceptional control flow
� The kernel will interrupt regular processing to ale rt us when a

background process completes
� In Unix the alert mechanism is called a signal.

25 15-213, S’08

Signals

A A signalsignal is a small message that notifies a process is a small message that notifies a process
that an event of some type has occurred in the that an event of some type has occurred in the
system.system.
� Kernel abstraction for exceptions and interrupts.
� Sent from the kernel (sometimes at the request of a nother

process) to a process.
� Different signals are identified by small integer I D’s (1-30)
� The only information in a signal is its ID and the fact that it

arrived.

Timer signalTerminateSIGALRM14

Segmentation violationTerminate & DumpSIGSEGV11

17

9

2

ID

Child stopped or terminatedIgnoreSIGCHLD

Kill program (cannot override or ignore)TerminateSIGKILL

Interrupt from keyboard (ctl-c)TerminateSIGINT

Corresponding EventDefault ActionName

26 15-213, S’08

Signal Concepts

Sending a signalSending a signal
� Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destinati on process.
� Kernel sends a signal for one of the following reas ons:

� Kernel has detected a system event such as divide-b y-zero
(SIGFPE) or the termination of a child process (SIG CHLD)

� Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destinat ion process.

27 15-213, S’08

Signal Concepts (continued)

Receiving a signalReceiving a signal
� A destination process receives a signal when it is forced by

the kernel to react in some way to the delivery of the signal.
� Three possible ways to react:

� Ignore the signal (do nothing)
� Terminate the process (with optional core dump).
� Catch the signal by executing a user-level function calle d a signal

handler .
� Akin to a hardware exception handler being called i n response to

an asynchronous interrupt.

28 15-213, S’08

Signal Concepts (continued)

A signal is A signal is pendingpending if it has been sent but not yet if it has been sent but not yet
received.received.
� There can be at most one pending signal of any part icular type.
� Important: Signals are not queued

� If a process has a pending signal of type k, then s ubsequent signals
of type k that are sent to that process are discard ed.

A process can A process can blockblock the receipt of certain signals. the receipt of certain signals.
� Blocked signals can be delivered, but will not be r eceived until

the signal is unblocked.

A pending signal is received at most once.A pending signal is received at most once.

29 15-213, S’08

Signal Concepts

Kernel maintains Kernel maintains pendingpending and and blockedblocked bit vectors in bit vectors in
the context of each process.the context of each process.
� pending – represents the set of pending signals

� Kernel sets bit k in pending whenever a signal of type k is
delivered.

� Kernel clears bit k in pending whenever a signal of type k is
received

� blocked – represents the set of blocked signals
� Can be set and cleared by the application using the sigprocmask

function.

30 15-213, S’08

Process Groups
Every process belongs to exactly Every process belongs to exactly
one process groupone process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp() – Return process
group of current process

setpgid() – Change process
group of a process

31 15-213, S’08

Sending Signals with kill Program

kill kill program sends program sends
arbitrary signal to a arbitrary signal to a
process or process process or process
groupgroup

ExamplesExamples
� kill –9 24818

� Send SIGKILL to
process 24818

� kill –9 –24817
� Send SIGKILL to every

process in process
group 24817.

linux> ./forks 16
linux> Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

32 15-213, S’08

Sending Signals with kill Function
void fork12()
{
 pid_t pid[N];
 int i, child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 while(1); /* Child infinite loop */

 /* Parent terminates the child processes */
 for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

 }

 /* Parent reaps terminated children */
 for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminated abnormally\n", wpid);

 }
}

33 15-213, S’08

Receiving Signals

Suppose kernel is returning from an exception Suppose kernel is returning from an exception
handler and is ready to pass control to process handler and is ready to pass control to process pp..

Kernel computesKernel computes pnb = pending & ~blocked pnb = pending & ~blocked
� The set of pending nonblocked signals for process p

If (If (pnb == 0pnb == 0))
� Pass control to next instruction in the logical flo w for p.

ElseElse
� Choose least nonzero bit k in pnb and force process p to

receive signal k.
� The receipt of the signal triggers some action by p
� Repeat for all nonzero k in pnb.

� Pass control to next instruction in logical flow fo r p.

34 15-213, S’08

Default Actions

Each signal type has a predefined Each signal type has a predefined default actiondefault action, ,
which is one of:which is one of:
� The process terminates
� The process terminates and “dumps core”.
� The process stops until restarted by a SIGCONT sign al.
� The process ignores the signal.

35 15-213, S’08

Installing Signal Handlers

The The signalsignal function modifies the default action function modifies the default action
associated with the receipt of signal associated with the receipt of signal signumsignum ::
� handler_t *signal(int signum, handler_t *handler)

Different values for Different values for handlerhandler ::
� SIG_IGN: ignore signals of type signum

� SIG_DFL: revert to the default action on receipt of signals of type
signum .

� Otherwise, handler is the address of a signal handler
� Called when process receives signal of type signum
� Referred to as “ installing” the handler.
� Executing handler is called “ catching” or “ handling” the signal.
� When the handler executes its return statement, con trol passes back to

instruction in the control flow of the process that was interrupted by
receipt of the signal.

36 15-213, S’08

Signal Handling Example
void int_handler(int sig)
{
 printf("Process %d received signal %d\n",
 getpid(), sig);
 exit(0);
}

void fork13()
{
 pid_t pid[N];
 int i, child_status;
 signal(SIGINT, int_handler);

 . . .
}

linux> ./forks 13
Killing process 24973
Killing process 24974
Killing process 24975
Killing process 24976
Killing process 24977
Process 24977 received signal 2
Child 24977 terminated with exit status 0
Process 24976 received signal 2
Child 24976 terminated with exit status 0
Process 24975 received signal 2
Child 24975 terminated with exit status 0
Process 24974 received signal 2
Child 24974 terminated with exit status 0
Process 24973 received signal 2
Child 24973 terminated with exit status 0
linux>

37 15-213, S’08

Signals Handlers as Concurrent Flows

A signal handler is a separate logical flow (thread) that A signal handler is a separate logical flow (thread) that
runs concurrently with the main programruns concurrently with the main program
� “Concurrently” in the “non-sequential” sense

Time

Process A

while (1)
 ;

Process A

handler(){
 …
}

Process B

38 15-213, S’08

Another View of Signal Handlers as
Concurrent Flows

Process A
code

Process B
code

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

context switch

Signal delivered

Signal received

39 15-213, S’08

Signal Handler Funkiness
Pending signals are Pending signals are
not queuednot queued
� For each signal type,

kernel has one bit
indicating whether or
not signal is pending

� Even if multiple
processes have sent
this signal

int ccount = 0;
void child_handler(int sig)
{
 int child_status;
 pid_t pid = wait(&child_status);
 ccount--;
 printf("Received signal %d from process %d\n",
 sig, pid);
}

void fork14()
{
 pid_t pid[N];
 int i, child_status;
 ccount = N;
 signal(SIGCHLD, child_handler);
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
 sleep(1); /* Child: deschedule */
 exit(0); /* Child: Exit */
}

 while (ccount > 0)
pause();/* Suspend until signal occurs */

}

40 15-213, S’08

Living With Non-Queuing Signals
Each signal is pending only onceEach signal is pending only once

� You may get SIGCHLD once if many children exit “at once”

Handler must check for Handler must check for allall terminated jobs terminated jobs
� Typically loop with wait()

void child_handler2(int sig)
{
 int child_status;
 pid_t pid;
 while ((pid = waitpid(-1, &child_status, WNOHAN G)) > 0) {

ccount--;
printf("Received signal %d from process %d\n", sig, pid);

 }
}
void fork15()
{
 . . .
 signal(SIGCHLD, child_handler2);
 . . .
}

41 15-213, S’08

Signal Handler Funkiness (Cont.)

Signal arrival during long system calls (e.g., Signal arrival during long system calls (e.g., read()read()))

Signal handler interrupts Signal handler interrupts read()read() call call
� Linux: upon return from signal handler, the read() call is

restarted automatically
� Some other flavors of Unix can cause the read() call to fail

with an EINTER error number (errno)
in this case, the application program can restart t he slow
system call

Subtle differences like these complicate the writin g of Subtle differences like these complicate the writin g of
portable code that uses signals.portable code that uses signals.

42 15-213, S’08

A Program That Reacts to
Externally Generated Events (ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
 printf("You think hitting ctrl-c will stop the bo mb?\n");
 sleep(2);
 printf("Well...");
 fflush(stdout);
 sleep(1);
 printf("OK\n");
 exit(0);
}

main() {
 signal(SIGINT, handler); /* installs ctl-c handle r */
 while(1) {
 }
}

43 15-213, S’08

A Program That Reacts to Internally
Generated Events
#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler(int sig) {
 printf("BEEP\n");
 fflush(stdout);

 if (++beeps < 5)
 alarm(1);
 else {
 printf("BOOM!\n");
 exit(0);
 }
}

main() {
 signal(SIGALRM, handler);
 alarm(1); /* send SIGALRM in
 1 second */

 while (1) {
 /* handler returns here */
 }
}

linux> a.out
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
bass>

44 15-213, S’08

Nonlocal Jumps: setjmp/longjmp

Powerful (but dangerous) user-level mechanism for t ransferring Powerful (but dangerous) user-level mechanism for t ransferring
control to an arbitrary location.control to an arbitrary location.
� Controlled to way to break the procedure call / ret urn discipline
� Useful for error recovery and signal handling

int setjmp(jmp_buf j)int setjmp(jmp_buf j)
� Must be called before longjmp()
� Identifies a return site for a subsequent longjmp() .
� Called once, returns one or more times

Implementation:Implementation:
� Remember where you are by storing the current regi ster context,

stack pointer, and PC value in jmp_buf.
� Return 0

45 15-213, S’08

setjmp/longjmp (cont)

void longjmp(jmp_buf j, int i)void longjmp(jmp_buf j, int i)
� Meaning:

� return from the setjmp remembered by jump buffer j again...
� …this time returning i instead of 0

� Called after setjmp

� Called once, but never returns

longjmplongjmp Implementation: Implementation:
� Restore register context from jump buffer j

� Set %eax (the return value) to i

� Jump to the location indicated by the PC stored in jump buf j .

46 15-213, S’08

setjmp /longjmp Example

#include <setjmp.h>
jmp_buf buf;

main() {
 if (setjmp(buf) != 0) {
 printf("back in main due to an error\n");
 else
 printf("first time through\n");
 p1(); /* p1 calls p2, which calls p3 */
}
...
p3() {
 <error checking code>
 if (error)
 longjmp(buf, 1)
}

47 15-213, S’08

Limitations of Nonlocal Jumps

Works within stack disciplineWorks within stack discipline
� Can long jump to environment of a function only if it has been

called but not yet completed
jmp_buf env;

P1()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 } else {
 P2();
 }
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{
 longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before longjmp

After longjmp

48 15-213, S’08

Limitations of Long Jumps (cont.)
Works within stack disciplineWorks within stack discipline

� Can only long jump to environment of function that has been
called but not yet completed

jmp_buf env;

P1()
{
 P2(); P3();
}

P2()
{
 if (setjmp(env)) {
 /* Long Jump to here */
 }
}

P3()
{
 longjmp(env, 1);
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

49 15-213, S’08

Putting It All Together: A Program
That Restarts Itself When ctrl-c ’d
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig) {
 siglongjmp(buf, 1);
}

main() {
 signal(SIGINT, handler);

 if (!sigsetjmp(buf, 1))
 printf("starting\n");
 else
 printf("restarting\n");

while(1) {
 sleep(1);
 printf("processing...\n");
 }
}

bass> a.out

Ctrl-c

starting
processing...
processing...
restarting
processing...
processing...
restarting
processing...

Ctrl-c

50 15-213, S’08

Summary

Signals provide process-level exception handlingSignals provide process-level exception handling
� Can generate from user programs
� Can define effect by declaring signal handler

Some caveatsSome caveats
� Very high overhead

� >10,000 clock cycles
� Use only for exceptional conditions

� Signals don’t have queues
� Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow Nonlocal jumps provide exceptional control flow
within processwithin process
� Within constraints of stack discipline

