
Linking
February 28, 2008

TopicsTopics
� Static linking
� Dynamic linking
� Case study: Library interpositioning

class13.ppt

15-213
“The course that gives CMU its Zip!”

2 15-213, S’08

Meta-Announcements

Look for announcements onLook for announcements on
� Gentler grading formula for Performance Lab
� Upgrade in correctness checking for same

ExamsExams
� Target: Monday recitation

I have somebody's hatI have somebody's hat

3 15-213, S’08

Example C Program

int buf[2] = {1, 2};

int main()
{
 swap();
 return 0;
}

main.c swap.c

extern int buf[];

static int *bufp0 = &buf[0];
static int *bufp1;

void swap()
{
 int temp;

 bufp1 = &buf[1];
 temp = *bufp0;
 *bufp0 = *bufp1;
 *bufp1 = temp;
}

4 15-213, S’08

Static Linking
Programs are translated and linked using a Programs are translated and linked using a compiler drivercompiler driver::

� unix> gcc -O2 -g -o p main.c swap.c
� unix> ./p

Linker (ld)

Translators
(cpp , cc1 , as)

main.c

main.o

Translators
(cpp , cc1 , as)

swap.c

swap.o

p

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and swap.c

5 15-213, S’08

Why Linkers?

Reason 1: ModularityReason 1: Modularity

� Program can be written as a collection of smaller s ource files,
rather than one monolithic mass.

� Can build libraries of common functions (more on th is later)
� e.g., Math library, standard C library

6 15-213, S’08

Why Linkers? (cont)

Reason 2: EfficiencyReason 2: Efficiency

� Time: Separate Compilation
� Change one source file, compile, and then relink.
� No need to recompile other source files.

� Space: Libraries
� Common functions can be aggregated into a single fi le...
� Yet executable files and running memory images cont ain only code

for the functions they actually use.

7 15-213, S’08

What Do Linkers Do?

Step 1. Symbol resolutionStep 1. Symbol resolution

� Programs define and reference symbols (variables and
functions):
� void swap() {…} /* define symbol swap */
� swap(); /* reference symbol swap */
� int *xp = &x; /* define xp, reference x */

� Symbol definitions are stored (by compiler) in symbol table.
� Symbol table is an array of structs
� Each entry includes name, type, size, and location of symbol.

� Linker associates each symbol reference with exactl y one
symbol definition.

8 15-213, S’08

What Do Linkers Do? (cont)

Step 2. RelocationStep 2. Relocation

� Merges separate code and data sections into single sections

� Relocates symbols from their relative locations in the .o files
to their final absolute memory locations in the exe cutable.

� Updates all references to these symbols to reflect their new
positions.

9 15-213, S’08

Three Kinds of Object Files (Modules)

1. Relocatable object file (1. Relocatable object file (.o.o file) file)
� Contains code and data in a form that can be combin ed with
other relocatable object files to form executable o bject file.
� Each .o file is produced from exactly one source (.c) file

2. Executable object file 2. Executable object file
� Contains code and data in a form that can be copied directly
into memory and then executed.

3. Shared object file (3. Shared object file (.so.so file) file)
� Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-
time.

� Called Dynamic Link Libraries (DLLs) by Windows

10 15-213, S’08

Executable and Linkable Format
(ELF)

Standard binary format for object filesStandard binary format for object files

Originally proposed by AT&T System V UnixOriginally proposed by AT&T System V Unix
� Later adopted by BSD Unix variants and Linux

One unified format for One unified format for
� Relocatable object files (.o),
� Executable object files
� Shared object files (. so)

Generic name: ELF binariesGeneric name: ELF binaries

11 15-213, S’08

ELF Object File Format
Elf headerElf header

� Magic number, type (.o, exec, .so), machine,
byte ordering, etc.

Segment header tableSegment header table
� Page size, virtual addresses memory

segments (sections), segment sizes.

.text.text section section
� Code

.data.data section section
� Initialized global variables

.bss.bss section section
� Uninitialized global variables
� “Block Started by Symbol”
� “Better Save Space”
� Has section header but occupies no space

ELF header

Segment header table
(required for executables)

.text section

.data section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

12 15-213, S’08

ELF Object File Format (cont)
.symtab.symtab section section

� Symbol table
� Procedure and static variable names
� Section names and locations

.rel.text.rel.text section section
� Relocation info for .text section
� Addresses of instructions that will need to

be modified in the executable
� Instructions for modifying.

.rel.data.rel.data section section
� Relocation info for .data section
� Addresses of pointer data that will need to

be modified in the merged executable

.debug.debug section section
� Info for symbolic debugging (gcc -g)

Section header tableSection header table
� Offsets and sizes of each section

ELF header

Segment header table
(required for executables)

.text section

.data section

.bss section

.symtab section

.rel.text section

.rel.data section

.debug section

Section header table

0

13 15-213, S’08

Linker Symbols

Global symbolsGlobal symbols
� Symbols defined by module m that can be referenced by other
modules.

� Ex: non- static C functions and non- static global variables.

External symbolsExternal symbols
� Global symbols that are referenced by module m but defined by
some other module.

Local symbolsLocal symbols
� Symbols that are defined and referenced exclusively by module
m.

� Ex: C functions and variables defined with the static attribute.

Key Point: Local linker symbols are Key Point: Local linker symbols are notnot local program local program
variablesvariables

14 15-213, S’08

Resolving Symbols

int buf[2] = {1,2};

int main()
{
 swap();
 return 0;
}

main.c
swap.c

extern int buf[];

static int *bufp0 = &buf[0];
static int *bufp1;

void swap()
{
 int temp;

 bufp1 = &buf[1];
 temp = *bufp0;
 *bufp0 = *bufp1;
 *bufp1 = temp;
}

Def of global
symbol buf

Ref to external
symbol buf

Ref to external
symbol swap

Def of local
symbol bufp0

Linker knows
nothing of temp

Def of global
symbol swap

15 15-213, S’08

Relocating Code and Data

main()

main.o

int *bufp0=&buf[0]

swap()

swap.o int buf[2]={1,2}

Headers

main()

swap()

0System code

int *bufp0=&buf[0]

int buf[2]={1,2}

System data

More system code

int *bufp1

System data

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss
.symtab
.debug

.data

Uninitialized data .bss

System code

16 15-213, S’08

main.o Relocation Info
0000000 <main>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 83 ec 08 sub $0x8,%esp
 6: e8 fc ff ff ff call 7 <main+0x7>
 7: R_386_PC32 swap
 b: 31 c0 xor %eax,%eax
 d: 89 ec mov %ebp,%esp
 f: 5d pop %ebp
 10: c3 ret

Disassembly of section .data:

 00000000 <buf>:
 0: 01 00 00 00 02 00 00 00

Source: objdump

int buf[2] = {1,2};

int main()
{
 swap();
 return 0;
}

17 15-213, S’08

swap.o Relocation Info (.text)
Disassembly of section .text:

00000000 <swap>:
 0: 55 push %ebp
 1: 8b 15 00 00 00 00 mov 0x0,%edx
 3: R_386_32 bufp0
 7: a1 0 00 00 00 mov 0x4,%eax
 8: R_386_32 buf
 c: 89 e5 mov %esp,%ebp
 e: c7 05 00 00 00 00 04movl $0x4,0x0
15: 00 00 00
 10: R_386_32 bufp1
 14: R_386_32 buf
18: 89 ec mov %ebp,%esp
1a: 8b 0a mov (%edx),%ecx
1c: 89 02 mov %eax,(%edx)
1e: a1 00 00 00 00 mov 0x0,%eax
 1f: R_386_32 bufp1
23: 89 08 mov %ecx,(%eax)
25: 5d pop %ebp
26: c3 ret

extern int buf[];

static int *bufp0 =
 &buf[0];
static int *bufp1;

void swap()
{
 int temp;

 bufp1 = &buf[1];
 temp = *bufp0;
 *bufp0 = *bufp1;
 *bufp1 = temp;
}

18 15-213, S’08

swap.o Relocation Info (. data)

Disassembly of section .data:

00000000 <bufp0>:
 0: 00 00 00 00

 0: R_386_32 buf

extern int buf[];

static int *bufp0 =
 &buf[0];
static int *bufp1;

void swap()
{
 int temp;

 bufp1 = &buf[1];
 temp = *bufp0;
 *bufp0 = *bufp1;
 *bufp1 = temp;
}

19 15-213, S’08

Executable After Relocation (. text)
080483b4 <main>:
 80483b4: 55 push %ebp
 80483b5: 89 e5 mov %esp ,%ebp
 80483b7: 83 ec 08 sub $0x8 ,%esp
 80483ba: e8 09 00 00 00 call 80483c8 <swap>
 80483bf: 31 c0 xor %eax ,%eax
 80483c1: 89 ec mov %ebp ,%esp
 80483c3: 5d pop %ebp
 80483c4: c3 ret
080483c8 <swap>:
 80483c8: 55 push %ebp
 80483c9: 8b 15 5c 94 04 08 mov 0x804945c,%edx
 80483cf: a1 58 94 04 08 mov 0x8049458,%eax
 80483d4: 89 e5 mov %esp ,%ebp
 80483d6: c7 05 48 95 04 08 58 movl $0x8049458,0x8049548
 80483dd: 94 04 08
 80483e0: 89 ec mov %ebp ,%esp
 80483e2: 8b 0a mov (%ed x),%ecx
 80483e4: 89 02 mov %eax ,(%edx)
 80483e6: a1 48 95 04 08 mov 0x8049548,%eax
 80483eb: 89 08 mov %ecx ,(%eax)
 80483ed: 5d pop %ebp
 80483ee: c3 ret

20 15-213, S’08

Executable After Relocation (. data)

Disassembly of section .data:

08049454 <buf>:
 8049454 : 01 00 00 00 02 00 00 00

0804945c <bufp0>:
 804945c: 54 94 04 08

21 15-213, S’08

Strong and Weak Symbols

Program symbols are either strong or weakProgram symbols are either strong or weak
� strong: procedures and initialized globals
� weak: uninitialized globals

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

22 15-213, S’08

Linker’s Symbol Rules

Rule 1. A strong symbol can only appear once.Rule 1. A strong symbol can only appear once.
(Each item can be defined only once)

Rule 2. A weak symbol can be overridden by a stron g Rule 2. A weak symbol can be overridden by a stron g
symbol of the same name.symbol of the same name.
� references to the weak symbol resolve to the strong symbol.

Rule 3. If there are multiple weak symbols, the lin ker Rule 3. If there are multiple weak symbols, the lin ker
will pick an arbitrary one.will pick an arbitrary one.
� Can override this with gcc –fno-common

23 15-213, S’08

Linker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y !
Evil!

Writes to x in p2 will overwrite y !
Nasty!

Nightmare scenario: two identical weak structs, com piled by different compilers
with different alignment rules.

References to x will refer to the same initialized
variable.

24 15-213, S’08

Packaging Commonly Used
Functions

How to package functions commonly used by How to package functions commonly used by
programmers?programmers?
� Math, I/O, memory management, string manipulation, etc.

Awkward, given the linker framework so far:Awkward, given the linker framework so far:
� Option 1: Put all functions in a single source file

� Programmers link big object file into their program s
� Space and time inefficient

� Option 2: Put each function in a separate source fi le
� Programmers explicitly link appropriate binaries in to their

programs
� More efficient, but burdensome on the programmer

25 15-213, S’08

Static Libraries

Solution: Solution: static librariesstatic libraries (. (.aa archive filesarchive files))
� Concatenate related relocatable object files into a single file
with an index (called an archive).

� Enhance linker so that it tries to resolve unresolv ed external
references by looking for the symbols in one or mor e archives.

� If an archive member file resolves reference, link into
executable.

26 15-213, S’08

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

unix> ar rs libc.a \
 atoi.o printf.o … random.o

Archiver allows incremental updates:
• Recompile function that changes and replace .o fi le in archive.

C standard library

27 15-213, S’08

Commonly Used Libraries
libc.alibc.a (the C standard library) (the C standard library)

� 8 MB archive of 900 object files.
� I/O, memory allocation, signal handling, string han dling, data and

time, random numbers, integer math

libm.alibm.a (the C math library) (the C math library)
� 1 MB archive of 226 object files.
� floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar -t /usr/lib/libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar -t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

28 15-213, S’08

Linking with Static Libraries

Translators
(cpp , cc1 , as)

main2.c

main2.o

libc.a

Linker (ld)

p2

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked
executable object file

vector.h Archiver
(ar)

addvec.o multvec.o

29 15-213, S’08

Using Static Libraries

Linker’s algorithm for resolving external reference s:Linker’s algorithm for resolving external reference s:
� Scan .o files and .a files in the command line order.
� During the scan, keep a list of the current unresol ved
references.

� As each new .o or .a file, obj, is encountered, try to resolve
each unresolved reference in the list against the s ymbols
defined in obj.

� If any entries in the unresolved list at end of sca n, then error.

Problem:Problem:
� Command line order matters!
� Moral: put libraries at the end of the command line .

bass> gcc -L. libtest.o -lmine
bass> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfu n'

30 15-213, S’08

Loading Executable Object Files

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

Executable Object File Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused0

%esp
(stack
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data , .bss)

Read-only segment
(.init , .text , .rodata)

Loaded
from
the
executable
file

31 15-213, S’08

Shared Libraries

Static libraries have the following disadvantages:Static libraries have the following disadvantages:
� Potential for duplicating lots of common code in t he
executable files on a filesystem.
� e.g., every C program needs the standard C library

� Potential for duplicating lots of code in the virtu al memory
space of many processes.

� Minor bug fixes of system libraries require each ap plication to
explicitly relink

Modern Solution: Shared Libraries Modern Solution: Shared Libraries
� Object files that contain code and data that are lo aded and
linked into an application dynamically, at either load-time or
run-time

� Also called: dynamic link libraries, DLLs, .so file s

32 15-213, S’08

Shared Libraries (cont)

Dynamic linking can occur when executable is first Dynamic linking can occur when executable is first
loaded and run (load-time linking).loaded and run (load-time linking).
� Common case for Linux, handled automatically by the
dynamic linker (ld-linux.so) .

� Standard C library (libc.so) usually dynamically linked.

Dynamic linking can also occur after program has Dynamic linking can also occur after program has
begun (run-time linking).begun (run-time linking).
� In Unix, this is done by calls to the dlopen() interface .

� High-performance web servers.
� Runtime library interpositioning

Shared library routines can be shared by multiple Shared library routines can be shared by multiple
processes.processes.
� More on this when we learn about virtual memory.

33 15-213, S’08

Dynamic Linking at Load-time

Translators
(cpp , cc1 , as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

p2

Dynamic linker (ld-linux.so)

Relocation and symbol
table info

libc.so
libvector.so

Code and data

Partially linked
executable object file

Relocatable
object file

Fully linked
executable
in memory

vector.h

Loader
(execve)

unix> gcc -shared -o libvector.so \
 addvec.c multvec.c

34 15-213, S’08

Dynamic Linking at Run-time
#include <stdio.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()
{
 void *handle;
 void (*addvec)(int *, int *, int *, int);
 char *error;

 /* dynamically load the shared lib that contain s addvec() */
 handle = dlopen("./libvector.so", RTLD_LAZY);
 if (!handle) {

fprintf(stderr, "%s\n", dlerror());
exit(1);

 }

35 15-213, S’08

Dynamic Linking at Run-time
 ...

 /* get a pointer to the addvec() function we ju st loaded */
 addvec = dlsym(handle, "addvec");
 if ((error = dlerror()) != NULL) {

fprintf(stderr, "%s\n", error);
exit(1);

 }

 /* Now we can call addvec() it just like any ot her function */
 addvec(x, y, z, 2);
 printf("z = [%d %d]\n", z[0], z[1]);

 /* unload the shared library */
 if (dlclose(handle) < 0) {

fprintf(stderr, "%s\n", dlerror());
exit(1);

 }
 return 0;
}

36 15-213, S’08

Case Study: Library Interpositioning

Library interpositioning is a powerful linking Library interpositioning is a powerful linking
technique that allows programmers to intercept call s technique that allows programmers to intercept call s
to arbitrary functionsto arbitrary functions

Interpositioning can occur at:Interpositioning can occur at:
� compile time

� When the source code is compiled
� link time

� When the relocatable object files are linked to for m an executable
object file

� load/run time
� When an executable object file is loaded into memor y, dynamically

linked, and then executed.

See Lectures page for real examples of using all th ree
interpositioning techniques to generate malloc trac es.

37 15-213, S’08

Some Interpositioning Applications

SecuritySecurity
� Confinement (sandboxing)

� Interpose calls to libc functions.
� Behind the scenes encryption

� Automatically encrypt otherwise unencrypted network connections.

Monitoring and ProfilingMonitoring and Profiling
� Count number of calls to functions
� Characterize call sites and arguments to functions
� Malloc tracing

� Detecting memory leaks
� Generating malloc traces

38 15-213, S’08

Example: malloc() Statistics
Count how much memory is allocated by a functionCount how much memory is allocated by a function

 void *malloc(size_t size){
 static void *(*fp)(size_t) = 0;
 void *mp;
 char *errorstr;

 /* Get a pointer to the real malloc() */
 if (!fp) {
 fp = dlsym(RTLD_NEXT, "malloc");
 if ((errorstr = dlerror()) != NULL) {
 fprintf(stderr, "%s(): %s\n", fname, errorstr);
 exit(1);
 }
 }

 /* Call the real malloc function */
 mp = fp(size);

 mem_used += size;

 return mp;
 }

