15-213

“The course that gives CMU its Zip!"

Linking
February 28, 2008

Topics
» Static linking
* Dynamic linking
» Case study: Library interpositioning

class13.ppt

Static Linking

Programs are translated and linked usinga compiler driver:
-unix> gec -2 -g -0 p i n.c swap.c
sunix> . /p

mainc swap.c Source files

Translators Translators
(cpp. ccl ,as) | | (epp. cel, as)

maino swap.o

Separately compiled
relocatable object files

Linker (1d)

Fully linked executable object file
P (contains code and data for all functions
defined in main.c and swap.c

4 15213 508

Meta-Announcements

Look for announcements on
* Gentler grading formula for Performance Lab
» Upgrade in correctness checking for same
Exams
* Target: Monday recitation

| have somebody's hat

2 15213 508

Why Linkers?

Reason 1: Modularity

* Program can be written as a collection of smaller source files,
rather than one monolithic mass.

» Can build libraries of common functions (more on this later)
- e.g., Math library, standard C library

5 15213 508

Example C Program

mainc swap.c
int buf(2] = {L. 2}; ‘extem int buf);
int main() statc int *ufp0 = &bufo):
{) static int *bufpl;

swap();)

return0; void swap()
}

3 15213 508

Why Linkers? (cont)

Reason 2: Efficiency

* Time: Separate Compilation
= Change one source file, compile, and then relink.
« No need to recompile other source files.

* Space: Libraries
= Common functions can be aggregated into a single fi ~ le...
= Yet executable files and running memory images cont ain only code
for the functions they actually use.

6 15213 508

What Do Linkers Do?
Step 1. Symbol resolution

* Programs define and reference symbols (variables and

functions):
- void swap(){...} /* define symbol swap */
- swap(); 1+ reference symbol swap */

«intxp=8x /*define xp, reference x ¥/

* Symbol definitions are stored (by compiler) in symbol table.
= Symbol table is an array of structs
= Each entry includes name, type, size, and location o symbol.

» Linker associates each symbol reference with exactly one
symbol definition.

15213, 508

Executable and Linkable Format
(ELF)

Standard binary format for object files
Originally proposed by AT&T System V Unix

» Later adopted by BSD Unix variants and Linux
One unified format for

» Relocatable object files (.0),

* Executable object files

» Shared object files (. so)

Generic name: ELF binaries

10

15213, 508

What Do Linkers Do? (cont)
Step 2. Relocation
* Merges separate code and data sections into single sections

» Relocates symbols from their relative locations in the o files
to their final absolute memory locations in the executable.

» Updates all references to these symbols to reflect their new
positions

8 15213, 508
ELF Object File Format
Elf header ELF header
* Magic number, type (.0, exec, .s0), machine,
byte ordering, etc. Segment header table
(required for executables)
Segment header table ot -
- Page size, virtual addresses memory e secto
segments (sections), segment sizes. .data section
text section -bss _section
* Code

symtab section

data section rel.ixt section

* Initialized global variables rel.data section

bss section debug section
« Uninitialized global variables ection header tabie
« “Block Started by Symbol”

- “Better Save Space”
* Has section header but occupies no space

1

15213, 508

Three Kinds of Object Files (Modules)

1. Relocatable object file (.o file)

= Contains code and data in a form that can be combined with
other relocatable object files to form executable object fi le.
« Each .o file is produced from exactly one source (.c) file

2. Executable object file

» Contains code and data in a form that can be copied directly
into memory and then executed.

3. Shared object file (.so file)
» Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-
time.

» Called Dynamic Link Libraries (DLLs) by Windows
9

15213 508
ELF Object File Format (cont)
sy';“ﬂ;ﬂ :;m" ELF header
« Sym e
+ Procedure and static variable names Segment header table
) (required for executables)
* Section names and locations
el sedion text_section
= Relocation info for .text ~section data section

= Addresses of instructions that will need to

bss section
be modified in the executable
= Instructions for modifying. EE/ianE cCton)
reldata section rel.text section
« Relocation info for .data section rel.data section
« Addresses of pointer data that will need to “debug sect
be modified in the merged bug section
debug section Section header table
« Info for symbolic debugging (gec-g)
Section header table

= Offsets and sizes of each section
15213, 508

Linker Symbols

Global symbols
* Symbols defined by module m that can be referenced by other
modules.
* Ex: non- static C functions and non- static global variables.
External symbols

* Global symbols that are referenced by module ~ m but defined by
some other module.

Local symbols
» Symbols that are defined and referenced exclusively by module
m.
= Ex: C functions and variables defined with the static attribute.
Key Point: Local linker symbols are not local program
variables

13 15213, 508

main.o Relocation Info

0000000 <main>:
0 55 push %ebp

7:R_386_PC32 swap
b Xor 96eax dpeax

d: 89ec mov_ %ebp %esp
£ pop %ebp

Disassembly of section .data:

00000000 <buf>:
0: 0100 00 00 02 0000 00

Source: objdump

16 15213, 508

Resolving Symbols

Def of global
symbol buf

Def of local

Ref to external symbol bufp0
symbol swap
Def of global
symbol swap

14

Ref to external
symbol buf

Linker knows
nothing of temp

15213, 508

swap.o Relocation Info (.text)

00000000 <swap>:
0:5

7:al 0000000

c:89e5 mov 9%esp.%ebp
ec7 0500000000 O<movl $0x4,040
15: 000000

8902
le:al 00000000

Disassembly of section .text:

: 55 h 96ebp
1:8b15 00000000 mov OX0%edx

mov

mov %ebp,desp

mov (%eds) d6ecx

mov Yeax,(%edx)
mov

23:8908 mov %ecx,(%eax)
25:5d pop %ebp
2:c3 ret

3:R_386_32 bufp0

04 %eax
8 R_386_32 buf

10: R_386_32 bufpl
14: R7386_32 buf

Yoeax
1f: R_386_32 bufpl

17

15213, 508

Relocating Code and Data

Relocatable Object Files

Executable Object File

text
data § e
: System code

mainQ
maino

text

Py
s
5

More system code

\
~~

.
.data
‘bss

15213, 508

swap.o Relocation Info (. data)

Disassembly of section .data:

00000000 <bufp0>:
0 0000 00 00

0:R_386_32 buf

15213, 508

Executable After Relocation (. text)

e Executable After Relocation (. data) Strong and Weak Symbols
80483b4: 55 push %ebp
80483b5: 89 €5 mov %esp Ybebp Program symbols are either strong or weak
e e G 2 g t dures and initialized globals
80483ba: e8 09 00 00 00 call 80483c8 <swap> Bty G = strong: procedu
oot e wor e e = weak: uninitialized globals
P \Sesp 08049454 <buf>:
80483c3: 5d pop %ebp
8048304 & = 8049454 01 00 00 00 02 00 00 00 aic e
0804538 <wap> s 0804945¢ <bup0>: — —
c push ebp tr [int fo0=5; intfoo;] weak
80483c9: 8b 15 5c 94 0408 mov 0x804945c, %edx LEEE SeaCee strong
80483cf: al 58 94 04 08 mov 0xB8049458 %eax
80483d4: 89 e5 mov %esp \%ebp strong rgbl()(;.2()(‘77 strong
80483d6: €705 movl $0xB049458 0x8049548
80483dd:
80483e0: 89 ec mov %ebp \%esp
80483e2: 8b 0a mov (%ed X),%ecx
80483e4: 8902 mov %eax \(%edx)
80483e6: al mov 0x8049548 %eax
80483eb: 8908 mov %ecx \(%eax)
80483ed: 5d pop %ebp
80483ee: c3 ret
19 15213, 508 20 15213, 508 21 15213, 508
; . ; Packaging Commonly Used
Linker's Symbol Rules Linker Puzzles ging Yy
Functions
How to package functions commonly used b
Rule 1. A strong symbol can only appear once. Link time error: two strong symbols (p1) pmgmﬁlame?sgo ly Yy
(Each item can be defined only once) » Math, I/0, memory management, string manipulation, etc.
References to x will refer to the same
uninitialized int. Is this what you really want? Awkward, given the linker framework so far:
Rule 2. A weak symbol can be overridden by a stron g = Option 1: Put all functions in a single source file
symbol of the same name. Writes to x in p2 might overwrite y! « Programmers link big object file into their program s
Evill

« Space and time inefficient
* Option 2: Put each function in a separate source file
« Programmers explicitly link appropriate binaries in to their
programs
- More efficient, but burdensome on the programmer

» references to the weak symbol resolve to the strong symbol.

Writes to x in p2 will overwrite y!
Nasty!
Rule 3. If there are multiple weak symbols, the lin ker
will pick an arbitrary one.

» Can override this with gcc —fno-common

References to x will refer o the same initialized
variable.

Nightmare scenario: two identical weak structs, com piled by different compilers
with different alignment rules,

2 15213, 508 23 15213, 508 24 15213, 508

Static Libraries

Solution: static libraries (.a archive files)

* Concatenate related relocatable object files into a single fil e
with an index (called an archive).

= Enhance linker so that it tries to resolve unresolved external
references by looking for the symbols in one or more archives.

* If an archive member file resolves reference, link into
executable.

25 15213, 508

Linking with Static Libraries

addvec.o multvec.o

main2.c vector.h

Translators
(cpp. ccl ,as) libvectdr.a libca Static libraries

>

Relocatable “Wainz.0 addveco /Printf.o and any other
object files modules called by pri ntf. o

o Fully linked

P2 executable object file

28 15213, 508

Creating Static Libraries

awic printf.c random.c
[Translator | [Translator | - [Transiator |
awio printo random.o
unix>ar rs libc.a \
Archiver (ar) at0i.0 printfo ... random.o
bca C standard library

Archiver allows incremental updates:
+ Recompile function that changes and replace .o fi Ie in archive.

26 15213, 508

Using Static Libraries

Linker's i for ing external s:
= Scan .o filesand .a files in the command line order.

* During the scan, keep a list of the current unresolved
references.

»Aseachnew .0 or .a file, obj, is encountered, try to resolve
each unresolved reference in the list against the symbols
defined in obj

+ If any entries in the unresolved list at end of scan, then error.

Problem:
* Command line order matters!
* Moral: put libraries at the end of the command line.

bass>gec -L. lbtesto Imine
bass>gcc -L. mine libtest.o

libtest.o: In function main'

libtest o(text+0x4): undefined reference to ‘libfu n

29 15213, 508

Commonly Used Libraries

libca (the C standard library)
- 8 MB archive of 900 object files.
= /0, memory allocation, signal handling, string han dling, data and

time, random numbers, integer math

libma (the C math library)
« 1 MB archive of 226 object files.

- floating point math (sin, cos, tan, log, exp, sart, -.)
Y% ar -t lusrib/ibe.a | sort % ar Justlblibm.a [sort
fork.o e acos.o
. e acosio
fpintLo e acosh.o
fpu_controlo e acosht.o
fpuico e acoshlo
reopen.o e acoslo
fscant.o eCasino
fseeko eCasinfo
fstabo eCasinlo
27 15213, 508

Loading Executable Object Files

Memory
invisible to
Executable Object File Kemelvitua memory ||
) oxconoaono bl i user code
0 User stack
ELF header (created at runtime)
Program header table T (5,5&
(requited for executables) ¢ pointer)
ieeeeton] Memory-mapped region for
A cEE aeaooonon shared libraries
_bss section
symiab [— bk
reltext Run-time heap
(created by malloc)
rel.data
Read/write segment Loaded
debug (data » bss) from
the
Section header table
(required for relocatables) ¢ e e) executable
oxomnsepop | UMM o 1XE e
30 0) 15213, 508

Shared Libraries

Static libraries have the following disadvantages:
* Potential for duplicating lots of common code in the
executable files on a filesystem.
= e.g., every C program needs the standard C library
» Potential for duplicating lots of code in the virtual memory
space of many processes
* Minor bug fixes of system libraries require each application to
explicitly relink
Modern Solution: Shared Libraries

» Object files that contain code and data that are loaded and
linked into an icati
run-time

, at either load-ti or

» Also called: dynamic link libraries, DLLs, .so files

31 15213, 08
Dynamic Linking at Run-time
#include <stdio.h>
#include <dlfen.h>
int main()
void *handle;
void (*addvec)(int *, int %, int *, int);
char *error;
I+ dynamically load the shared lib that contain s addvec() */
handle = diopen("./libvector.so", RTLD_LAZY);
if (thandle) {
fprintf(stderr, "%s\n", dlerror());
exit(1);

Shared Libraries (cont)

Dynamic linking can occur when executable is first
loaded and run (load-time linking).
* Common case for Linux, handled automatically by the
dynamic linker (Id-inux.so)

« Standard C library (ibcso) usually dynamically linked

Dynamic linking can also occur after program has
begun (run-time linking).
* In Unix, this is done by calls to the
* High-performance web servers.
« Runtime library interpositioning

diopen() interface

Shared library routines can be shared by multiple
processes.

* More on this when we learn about virtual memory.
32

15213, 508

Dynamic Linking at Run-time

F* geta pointer to the addvec() function we ju stloaded */
addvec = disym(handle, "addvec’);
if (error = dlerror() 1= NULL) {

forint(stderr, "S%s\n", error);

exit(1);

7 Nowwe can call addvec() it just like any ot her function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", 2[0], 2[1)

7 unload the shared library */

if (diclose(handle) < 0) {
forint(stderr, "S%s\n", dierror();
exit(1);

}
feturn 0;

15213, 508

Dynamic Linking at Load-time

mamf < vech h unix> gec -shared -o libvector.so \

dvec.c multvec.c.

Translators
(cpp, cet, as) libc.so
libvector.so
Relocatable

objectfile Main2o

Relocation and symbol
table info

Partially linked
executable object file P2

libc.so
libvector.so

Code and data

Fully linked
executable [[Dynamic linker (ia-inixso)
in memory

15213, 508

Case Study: Library Interpositioning
Library interpositioning is a powerful linking
i that allows prog toil pt call s
to arbitrary functions

Interpositioning can occur at:
» compile time
* When the source code is compiled
* link time

« When the relocatable object files are linked to for ~ m an executable
object file

= load/run time

« When an executable object file is loaded into memor y, dynamically
linked, and then executed.

See Lectures page for real examples of using all three
interpositioning techniques to generate malloc traces.

15213, 508

Some Interpositioning Applications

Security
* Confinement (sandboxing)
« Interpose calls to libc functions.
* Behind the scenes encryption
* Automatically encrypt otherwise unencrypted network connections.
Monitoring and Profiling
= Count number of calls to functions
= Characterize call sites and arguments to functions
» Malloc tracing
« Detecting memory leaks
» Generating malloc traces

37 15213, 508

Example: malloc() Statistics

Count how much memory is by a function

void *malloc(size_t size){
static void *(fp)(size_t) = 0;
void *mp;
char *errorstr;

1* Geta pointer to the real malloc() */
if(fp) {
= disym(RTLD_NEXT, "malloc’);
if (errorstr = dlerror()) 1= NULL) {
forint(stder, "%s(): %s\n", fname, errorstr);

}

/* Call the real malloc function */
mp = fp(size):

mem_used += size:

retumn mp;
}

38 15213, 508

