15-213

“The course that gives CMU its Zip!”

Cache Memories
February 26, 2008

Topics
= Generic cache memory organization
= Direct mapped caches
= Set associative caches
= Impact of caches on performance
= The memory mountain

class12.ppt

Synchronization - 2

Computer Club movie night
= “Colossus, The Forbin Project”
= Wednesday evening
= Wean 7500
=19:00 Computer Club Intro, co-op pizza order
= 19:30 Movie

3 15-213,5'08

Cache Memories

Cache memories are small, fast SRAM-based
memories managed automatically in hardware.
= Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main
memory.

Typical system structure:

_CPUChp
re «ster f«le

Ll
'l;;s - memary bus
SRAM Por? ‘sy/s?zm bus
‘ L2 dm bus mterfacz memary

15-213,5'08

Synchronization

First exam this evening
= If you have not received mail with a Subject line | ike “15-213
exam: conflict session C2” then we expect you at the main
exam session
= Room split by Andrew username (not first/last/middl e name!)
= a-c Wean 7500
» d-z McConomy Auditorium in University Center
= Bring with you
* Your TA's name and/or 15-213 section letter
« If you want your test to be returned in recitation
» Book and notes, if you wish
* Suggested: know your powers of 2
* No calculators

2 15-213, S'08

Determinant

Theorem 5. If A and B are square matrices of the
same size, then det(AB) = det(A) * det(B).

The elegant simplicity of this result contrasted wi th
the complex nature of both matrix multiplication an d
the determinant definition is both refreshing and
surprising. We shall omit the proof.

Anton, Elementary Linear Algebra, 4th ed. , p. 72.

4 15-213, 508

Inserting an L1 Cache Between
the CPU and Main Memory

The tiny, very fast CPU
register file has room for four
4-byte words.

The transfer unit
between the CPU
register file and the
is a 4-byte block.
line 0
line 1

The small fast has
room for two 4-word blocks.

The transfer unit
between the

and main memory is
a 4-word block (16
bytes).

block 10
block 21f pars]
block 30

The big slow main memory
has room for many 4-word
blocks.

6 15-213, S'08

General Organization of a Cache

Cache is an array Tlagbits =20 pytes
of sets. per line per cache block
e e——
Each set contains [of1[---[o-1] E lines
one or more lines. [set 0 e er set
[o[1[---Te-1) | |°

Each line holds a
block of data. (o] 1]

s set 1 ton
= 2sets (o[1[-[a1]

o] 1]--- e
(o] 1]--- e

Cache size: C =B xE x S data bytes

set S-1:

7 1 valid bit per line

15-213,5'08
Addressing Caches
Address A:
‘ t bits | s bits ‘ b bits |
m-1 []
H_/H_)

<tag> <set deeX) <block offset>

set 1

i) [oTiT &3

1. Locate the set based on
<set index>

2. Locate the line in the set based on
<tag>

3. Check that the line is valid

4. Locate the data in the line based on

<block offset>

Accessing Direct-Mapped Caches

Set selection
= Use the set index bits to determine the set of inte rest.

set O: ‘ tag ‘ ‘ cache block ‘ ‘
selected set
tag ‘ ‘ cache block ‘ |
[tag | ‘ cache block ‘ ‘
b bits
[[oooo1 |]
ml tag setindex block of fset ©

11 15-213,5'08

Addressing Caches

Address A:
1 bits s bits b bits
[[
m 0
set 0
<tag> <set deex> <block offset>
set 1:

The word at address A is in the cache if
the tag bits in one of the <alid> lines in
set «set index> match <tag>.

The word contents begin at of fset
<block offset> bytes from the beginning
of the block.

Direct-Mapped Cache

Simplest kind of cache, easy to build
(only 1 tag compare required per access)

Characterized by exactly one line per set.
|} €t tnes per set
[tag] [cacheblock] |

o] [tag J|_cacheblock]|

Cache size: C = B x S data bytes
10 15213, S'08

Accessing Direct-Mapped Caches

Line matching and word selection
= Line matching : Find a valid line in the selected set with a
matching tag
= Word selection : Then extract the word

=17 (1) The valid bit must be set

0 1 2 3 4 5 6 7
selected set (i) Coo][[[[Twelwlwlw] |
(2) The tag bits in the |

cache line must -2 If (1) and (2), then cache hit
match the tag bits in
the address N . .
t bits s bits b bits
[o110 T i | 100
™1 tag set index block offset®
12 15-213, S'08

Accessing Direct-Mapped Caches Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,

Line matching and word selection
t=1 s=2 b=1 S=4sefs, E=lentry/set

= Line matching : Find a valid line in the selected set with a
matching tag

= Word selection : Then extract the word Address trace (reads):

0 [0000 ,), miss

1 [ooo1,, it
0 1 2 3 4 5 6 7 7 [0111 2]' m!SS
selected set ()] Coo J[[[[[welwlwlw] | 8 [1000,) "%
F 0 [0000 ,]
(3) If cache hit,
block offsef selects v tag data
starting byte. 1] 0 M[0-1]
t bits s bits b bits
[omo T i [100]
™1 tag set index block offset® 1] o0 M[6-7]
13 15-213,5'08 14 15-213, S'08
Set Associative Caches Accessing Set Associative Caches

Characterized by more than one line per set Set selection

= identical to direct-mapped cache
tag | [cache block]
set O:
set 0: tag]| cache block E=2 ¢ tag_| [cache block
tag_ | | cache block]| (lines per set
selected s set tag] | cache block |
tag ‘ ‘ cache block ‘ tag | [cache block]
set 1t
tag ‘ ‘ cache block ‘ -
tag | [cache block |
set S-1: tag_ | | cache block |
tag | | cache block |
set S-1: ‘ ‘ = ‘
tag cache bloc tbits sbits b bits
[[oooo01 J |
E-way associative cache ml tag set index block of fset ©
15 15-213,5'08 16 15213, 508
Accessing Set Associative Caches Accessing Set Associative Caches
Line matching and word selection Line matching and word selection
= must compare the tag in each valid line in the sele cted set. = Word selection is the same as in a direct mapped ca che
=1? (1) The valid bit must be set
o 1z 3 4 s s g
I I A (1] [1001] [EEEEEEEI
selected set (i): o110 [CACACALS selected set (i): EI o110 il g W,
2) The tag bitsi
@ e 1] © 1t s
=7 If (1) and (2), then cache hit block offset selects
must match the tag tarting byt
bits in the addre: starting byte.
t bits s bits b bits t bits s bits b bits
[oti0 T i | 100 | [o110 T i | 100
™1 tag setindex block offset® ™1 tag set index block offset®

17 15-213,5'08 18 15-213, S'08

2-Way Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
t=2 s=1 b=l S=2sefs, E=2 entry/set

Address trace (reads): .

0 [0000 ,], ™Miss
[ooo1 ,, M
o1). 7
[1000 ,], hit
[0000 ,]

[=JN--RENI

tag _ datg
00 M[O-1
10 M[8-9
01 M[6-7]

of~f-|~|<

19 15213, 508

Maintaining an Associative Cache

= How to decide which cache line to use in a set?
= Least Recently Used (LRU), Requires [y,(E!) Dextra bits
= Not recently Used (NRU)
= Random
=Virtual vs. Physical addresses:
= The memory system works with physical addresses, bu tit

takes time to translate a virtual to a physical add ress. So most
L1 caches are virtually indexed, but physically tag ged.

21 15-213,5'08

What about writes?

Multiple copies of data exist:
L1
L2
= Main Memory
= Disk
What to do when we write?
= Write-through
= Write-back
+ need a dirty bit
* What to do on a write-miss?
What to do on a replacement?
= Depends on whether it is write through or write bac k

23 15-213,5'08

Why Use Middle Bits as Index?

4-line Cache

00
01
10
11

High-Order Bit Indexing
= Adjacent memory lines would
map to same cache entry

= Poor use of spatial locality

Middle-Order Bit Indexing
= Consecutive memory lines
map to different cache lines
= Can hold S*B*E-byte region of
address space in cache at one
20time

Multi-Level Caches

High-Order Middle-Order
it Tndexing Bit Indexin,
0000 0000]
0001 0001
0010 0010]
0011 0011
0100 0100]
0101 0101
0110 0110]
0111 0111
1000 1000]
1001 1001
1010 1010
1011 1011
1100 1100
1101 1101
1110 1110]
1111 1111
15-213, S'08

Options: separate data and instruction caches , or a

unified cache

Processor Unified
L2 Memory|
Cache
size: 200 B 8-64KB 1-4MB SRAM 128 MB DRAM 30 GB
speed: 3ns 3 ns 6ns 60 ns 8ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 328 328 8 KB
larger, slower, cheaper
15213, S'08

22

Intel Pentium Il Cache Hierarchy

24

L1 bata
| 1cycle latency
Regs. 16 k8 | L2 Unified
> 4-way assoc 128KB--2 MB Main
Write-through ey assoc || e
SRR Write-back o 4(33
L1 Instruction Write allocate P
16 KB, 4-way 328 lines
328 lines
Processor Chip
15-213, S'08

Cache Performance Metrics

Miss Rate

* Fraction of memory references not found in cache
(misses / references)

* Typical numbers:
* 3-10% for L1
* can be quite small (e.g., < 1%) for L2, depending on size, etc.
Hit Time
» Time to deliver a line in the cache to the processor (includes time t [
determine whether the line is in the cache)

+ Typical numbers: Aside folr‘ archlfch?:
+1-2 clock cycle for L1 -Increasing cache size?
* 5-20 clock cycles for L2 -Increasing block size?
Miss Penalty -Increasing associativity?

» Additional time required because of a miss
» Typically 50-200 cycles for main memory (Trend: increasing!)

25

15-213,5'08

The Memory Mountain

Read throughput (read bandwidth)
= Number of bytes read from memory per second (MB/s)

Memory mountain

= Measured read throughput as a function of spatiala nd
temporal locality.

= Compact way to characterize memory system performanc e.

27

15-213,5'08

Memory Mountain Main Routine

/* mountain.c - Generate the memory mountain. */

#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* .. up to 8 MB */

#define MAXSTRIDE 16 /* Strides range from 1 to 16 */

#define MAXELEMS MAXBYTES/sizeof(int)

int data[MAXELEMS]; /* The array we'll be traversing */
int main()
{

intsize; /*Working set size (n bytes)
int stride; [+ Stiide (in array elements) */
double Mhz; /* Clock frequency */

init_data(data, MAXELEMS); /* Initialize each element in data to 1*/
Mhz = mhz(0); 1+ Estimate the clock frequency */
for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {
for (stride = 1; stride <= MAXSTRIDE; stride++)
printf(*%6. 1A\", run(size, stride, Mhz));
printi("\n");

exit(0);
}

29

15-213,5'08

Writing Cache Friendly Code
« Repeated references to variables are good
(temporal locality)

« Stride-1 reference patterns are good (spatial locality)
« Examples:
= cold cache, 4-byte words, 4-word cache blocks

int sum_array_rows(int a[M][N]) int sum_array_cols(int a[M][N])
{
inti, j, sum=0; inti,j, sum=0;
for (i=0;i<M; i++) for (= 0;j <N; j++)
for J<N; jH+) for (i <M; i++)
sum += afiJ[; sum += afi][jJ;
return sum; return sum;
Miss rate =1/4 = 25% Miss rate =100%
26 15213, 508
Memory Mountain Test Function
I* The test function */
void test(int elems, int stride) {
inti, result = 0;
volatile int sink;
for (i = 0; i < elems; i += stride)
result += data[i];
sink = result; * So compiler doesn't optimize away the loop */
1* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
double cycles;
int elems = size / sizeof(int);
test(elems, stride); J* warm up the cache */
cycles = feyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
28 15-213, 508
Pentium IIT
The Memory Mountain 550 MHz

16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

Throughput (MB/sec)

Slopes o
Spatial Ridges of
Locality Temporal
P Locality
Working set size
Stride (words) (bytes)
30

15-213, 508

X86-64 Memory Mountain

Pentium Nocona Xeon x86-64
32GHz

12 Kuop on-chip L1 trace cache
16 KB on-chip L1 d-cache

1 MB off-chip unified L2 cache

6000

Ridges of
Temporal
Localty

Rgad Throughput (MB/s)

Slopes of
Spaial Working Set Size
Localty (bytes)

” Stide (words) 15.213, 508

Ridges of Temporal Locality

Slice through the memory mountain with stride=1
= illuminates read throughputs of different caches an d memory

1200

mah memory L2 cache L1 cache
regon region jon

800

400 I
-]]]I
o0+ —
£

253838

g 8
3 workig set size (bytes) 15-213, 508

read througput (MB/s)

5126

Matrix Multiplication Example

Major Cache Effects to Consider
= Total cache size

» Exploit temporal locality and keep the working set small
(e.g., use blocking)

= Block size ik X:;:;lisu-m
= Exploit spatial locality for (1=0; i<n; i++) { egister
o —/
Description: K=0; k<n; k+)
= Multiply N x N matrices sum +=afiJ[K] * blK][];
= O(N3) total operations cfilj] = sum;
= Accesses }

* N reads per source element
* N values summed per destination
* but may be able to hold in register

35 15-213,5'08

Opteron Memory Mountain

AMD Opteron
2GHz

i

Read ‘ |‘\\‘.
throughput \\‘l.\\'l
(MB/s) \\\\\ LIS
> -
Working set
(bytes)
b
P Stiide (words) @ 15213, 508
A Slope of Spatial Locality
Slice through memory mountain with size=256KB
= shows cache block size.
800
700
600 T
. | on access percacne e
i, | i
¢ sl s2 s3 s4 s5 s6 s7 s8 s9 s10 sll s12 s13 sl4 s15 s16
stride (words)
34 15213, 508

Miss Rate Analysis for Matrix Multiply

Assume:
= Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
* Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

Analysis Method:

= Look at access pattern of inner loop

N L
A B c

36 15-213, S'08

Layout of C Arrays in Memory
(review)

C arrays allocated in row-major order
= each row in contiguous memory locations
Stepping through columns in one row:

for (i=0;i<N;i++)
sum += a[0][i];
= accesses successive elements
= if block size (B) > 4 bytes, exploit spatial localit y
* compulsory miss rate = 4 bytes / B
Stepping through rows in one column:
for (i=0;i<n;i++)
sum += a[iJ[0];
= accesses distant elements
= no spatial locality!
* compulsory miss rate =1 (i.e. 100%)

37

15-213,5'08

Matrix Multiplication (jik)

ik
for (j=0; j<n; j++) {
for (i=0; i<n; i++) { ﬁj
sum = 0.0;
for (k=0; k<n; k++) g [G)]
sum += a[i][K] * blK][]l; A]
cfifj] = sum

Inner loop:

c

,> 1

Column- Fixed
Misses per Inner Loop Iteration: wise

025 10 00

39

15-213,5'08

Matrix Multiplication (ikj)

ik Inner loop:
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r=a[ik;
for (j=0; j<n; j++)

K
g S
B c
ol += r* blK[:
> 1
} .

Fixed R i R
Misses per Inner Loop Iteration:
A B C
0.0 0.25 0.25
41 15-213,508

Matrix Multiplication (ijk)

ik
for (i=0; i<n; i++) {

for (k:O‘.kv<n; k+)
sum += afiJ[k] * blK[;
c[ilj] = sum;

}

Inner loop:

g(f,*) ﬁj
A

B c

L

Row-wise Column- Fixed

Misses per Inner Loop Iteration:

025 10 00

38

wise

15-213, 508

Matrix Multiplication (kij)

ki *T
for (k=0; k<n; k++) {

for (=0; j<n; j++)

cfilil += r * bik]il;

Inner loop:

E(k,*)g(“)
B c

A

o

Fixed Row-wise Row-wise

Misses per Inner Loop Iteration:

00 025 025

Matrix Multiplication

15-213, 508

(ki)

ki *T
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
1= blk]i;
for (i=0; i<n; i++)
clil[] += a[i[K * r;
}

}

Inner loop:

1

A B c

T

Misses per Inner Loop Iteration:
A B C

10 00 10

2

Column - Fixed Column-
wise wise

15-213, 508

Matrix Multiplication (kji)

it Inner loop:
for k<n; k++) {

for (j=0; j<n; j++) { * k) >
r=b[KL:

for (i=0; i<n; i++) A N ¢

clili] += afillk] * r;
’ L

}
Column- Fixed Column-
wise wise
Misses per Inner Loop Iteration:
A B [}
1.0 0.0 1.0
43 15-213,5'08

Pentium Matrix Multiply Performance

Miss rates are helpful but not perfect predictors.
= Code scheduling matters, too.

60

i & ki /44/-/-'-

A g
10 //‘ AR RALS
W J J

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

45 Araysize (n)

Cyelesiiteration

15-213,5'08

Equation Rewriting

The math
Cu= ABy+ABy Co= AByL+ AR,
Czl = A21311+A22321 sz = A21312+A22322
Straightforward conversion to imperative code
c=0

Cu = AuBu Cu = Alzgzl Clz = AuBlz Clz = Alzgzz

Coy +2 AByy Gy += AyByy Coo 4= AyBy, Gy += Ay,
Re-order the code to get more cache hits

c=0

Cu = AuBu Czl = Azlgu

Cuy += ApByy Gy += AyBy,

Cp +=

We use B11 twice (with An, Aﬂ), then B21 twice...

Wecanfit1B_inthecacheno matter how big the matrices get
47 x* 15-213,5'08

Summary of Matrix Multiplication

for (=0; i<n; i+4) {
for (=0; j<m; j+4) {

ijk (& jik):

afiJik] * bIKI[: + 2 loads, O stores

sum s
)= sum; . .

e - misses/iter = 1.25
)

Tor (k=0 ken; k++) {

for (i=0; i<n; i+4) { . T

= alil; kij (& ikj):

for G=0; jem i+ - 2 loads, 1 store

o] +=1 * biIGl: X i
)) * misses/iter =0.5
for (j=0; j<m; j++) {

for (k=0; ken; k++) { e fen,

=Bkl Jki (& kji):

for (i=0; i<n; i++) .

il += Ak 2 Ioads/, 1store

) * misses/iter =2.0
44 1 15213, S'08

Improving Temporal Locality by
Blocking

Example: Blocked matrix multiplication
= “block” (in this context) does not mean “cache block
= Instead, it mean a sub-block within the matrix.
= Example: N = 8; sub-block size = 4

A A 8, 8, G Co
M -
o b 8, B C Ca
Key idea: Sub-blocks (i.e., A,,) can be treated just like

scalars.

Cu = AuBy+ApBy Cp = AuBi+ ALB;,

Ca = AuBy+ AuBy Cop = AuBi+ AnB,,

15-213, 508

Blocked Matrix Multiply (bijk)

for (ji=0; ji<n; jj+=bsize) {

<n; i++)
j < minj+bsize,n); j++)
0;

for (kk=0; kk<n; kk+=bsize) {
for (i=0; i<n; i++) {
for (j=jj; j < min(jj+bsize,n); j++) {
sum=0.0
for (k=kk; k < min(kk+bsize,n); k++) {
sum += a[i][K] * b{K][];

cli[j] += sum;

48 15-213, S'08

Blocked Matrix Multiply Analysis

= Innermost loop pair multiplies a 1 X bsize sliver of A by a bsize X
bsize block of B and accumulates into 1 X bsize sliver of C

=Loop over i steps through n row slivers of A & C, using same B
for (i=0; i<n; i++) {
for (j=jj; j < min(jj+bsize n); j++) {

um =0.0

1br (k=kk; k < min(kk+bsize,n); k++) {

sum += afiJ[k] * bIK][;

)i
(][] += sum;
Innermo:
Loop Pair L S En it e
E Kk
i | h
A B c
row sliver accessed Update Succes.sive
bsize times block reusedn elements of sliver
49 times in succession 15213, 508

Concluding Observations

Programmer can optimize for cache performance
= How data structures are organized
= How data are accessed
» Nested loop structure
» Blocking is a general technique

All systems favor “cache friendly code”
= Getting absolute optimum performance is very platfo rm
specific
» Cache sizes, line sizes, associativities, etc
= Can get most of the advantage with generic code
* Keep working set reasonably small (temporal locality)
* Use small strides (spatial locality)

51 15-213,5'08

Pentium Blocked Matrix
Multiply Performance

Blocking (bijk and bikj) improves performance by a
factor of two over unblocked versions (ijk and jik)
= relatively insensitive to array size.

60

EY
{.:fl"’r' -
0 - ki

4 kij
ik
- ik
8- ijk
& bijk (bsize = 25)
o bikj (bsize = 25)

Cyclesiiteration

o
PECLPLLLLP LS P LS
50 Aray size (n) 15213, 508

