15-213
“The Class That Gives CMU lts Zip!”

Introduction to
Computer Systems

Randal E. Bryant
January 15, 2008

Topics:
m Theme
m Five great realities of computer systems
m How this fits within CS curriculum

classOla.ppt 15-213 S ‘08

Course Theme

m Abstraction is good, but don’t forget reality!

Most CS courses emphasize abstraction

m Abstract data types
m Asymptotic analysis

These abstractions have limits
m Especially in the presence of bugs
m Need to understand underlying implementations

Useful outcomes
= Become more effective programmers
® Able to find and eliminate bugs efficiently
® Able to tune program performance
m Prepare for later “systems” classes in CS & ECE

® Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

15-213, S ‘08

Great Reality #1

Int’s are not Integers, Float's are not Reals

Examples
m s x2207?
® Float’s: Yes!
® Int’s:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 -->?7?
mils(x+y)+z = x+(y+2z)?
® Unsigned & Signed Int’s: Yes!
® Float’s:
» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

15-213, S ‘08

Computer Arithmetic

Does not generate random values

m Arithmetic operations have important mathematical
properties

Cannot assume “usual” properties
m Due to finiteness of representations
m Integer operations satisfy “ring” properties
e Commutativity, associativity, distributivity

m Floating point operations satisfy “ordering” properties
® Monotonicity, values of signs

Observation
m Need to understand which abstractions apply in which
contexts
= Important issues for compiler writers and serious application

programmers
a4 15-213, S ‘08

Great Reality #2

You've got to know assembly

Chances are, you’ll never write program in assembly
m Compilers are much better & more patient than you are

Understanding assembly key to machine-level
execution model

m Behavior of programs in presence of bugs
® High-level language model breaks down

m Tuning program performance

® Understanding sources of program inefficiency
= Implementing system software

® Compiler has machine code as target

® Operating systems must manage process state

m Creating / fighting malware

e ® x86 assembly is the language of choice! 15213, S 08

Assembly Code Example

Time Stamp Counter

m Special 64-bit register in Intel-compatible machines
= Incremented every clock cycle
m Read with rdtsc instruction

Application

m Measure time required by procedure
® In units of clock cycles

double t;
start_counter();
PO;

t = get _counter();
printf("'P required %f clock cycles\n", t);

-6 - 15-213, S ‘08

Code to Read Counter

m Write small amount of assembly code using GCC’s asm
facility

m Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi
static unsigned cyc lo

0
O;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access _counter(unsigned *hi, unsigned *10)
{
asm(''rdtsc; movl %%edx,%0; movl %%eax,%l"
: lI:rll (*hi)’ ll:rll (*IO)
o "Wedx', ""%eax");
+

-7 - 15-213, S ‘08

Great Reality #3

Memory Matters: Random Access Memory is an
un-physical abstraction

Memory is not unbounded
= It must be allocated and managed
m Many applications are memory dominated

Memory referencing bugs especially pernicious
m Effects are distant in both time and space

Memory performance is not uniform

m Cache and virtual memory effects can greatly affect program
performance

m Adapting program to characteristics of memory system can
lead to major speed improvements

- 8- 15-213, S ‘08

Memory Referencing Bug Example

double fun(int 1)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i1] = 1073741824; /* Possibly out of bounds */
return d[O];

}

fun(0) — 3.14
fun(l) — 3.14
fun(2) — 3.1399998664856
fun(3) — 2.00000061035156

3.14, then segmentation fault

15-213, S ‘08

Referencing Bug Explanation

Saved State 4\
d7 .. d4 3
Location accessed
d3 .. do 2 by fun(i)
a[1] 1
a[O] O)

m C does not implement bounds checking
m Out of range write can affect other parts of program state

_10- 15-213, S ‘08

Memory Referencing Errors

C and C++ do not provide any memory protection
m Out of bounds array references
m Invalid pointer values
m Abuses of malloc/free

Can lead to nasty bugs

m Whether or not bug has any effect depends on system and
compiler

m Action at a distance
e Corrupted object logically unrelated to one being accessed
e Effect of bug may be first observed long after it is generated

How can | deal with this?
m Program in Java or ML
m Understand what possible interactions may occur

m Use or develop tools to detect referencing errors
11 - 15-213, S ‘08

Memory System Performance
Example

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])
{ {
int i,j; int i,j;
for (i = 0; 1 < 2048; 1++) — — for (J = 0; J < 2048; j++)
for (j = 0; j < 2048; j+)—F 1~ for (i =0; i < 2048; i++)
dst[i1][3] = srclill1]; dst[1][3] = srclill1];
s s
59,393,288 clock cycles 1,277,877,876 clock cycles
_/ (Measured on 2GHz
21.5 times slower! Intel Pentium 4)

m Hierarchical memory organization

m Performance depends on access patterns
® Including how step through multi-dimensional array

1o 15-213, S ‘08

The Memory Mountain

Pentium 1l Xeon

00T p——— 550 MHz
Py} A 16 KB on-chip L1 d-cache
% 1000 16 KB on-chip L1 i-cache
= 512 KB off-chip unified
= L2 cache
Q.
£ 800
(o2}
=
2 :
K X o o
= 600 \ copyj 1
g /
\ g

Stride (words) é Working set size (bytes)
Lo

13- 15-213, S ‘08

Great Reality #4

There’'s more to performance than asymptotic
complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code
written

m Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performance
m How programs compiled and executed

= How to measure program performance and identify
bottlenecks

= How to improve performance without destroying code
modularity and generality

- 14 - 15-213, S ‘08

Code Performance Example

— 15—

/* Compute product of array elements */
double product(double d[], int n)
{

double result = 1;

int 1;

for (1 = 0; 1 < n; 1++)

result = result * d[1];
return result;

= Multiply all elements of array

m Performance on class machines: ~7.0 clock cycles
per element
e Latency of floating-point multiplier

15-213, S ‘08

Loop Unrollings

/* Unroll by 2. Assume n i1s even */

/* Unroll by 2.

Assume n 1S even */

double product _u2(double d[], int n) double product _u2r(double d[], int n)
{ {
double result = 1; double result = 1;
int 1; int 1;
for (1 = 0; 1 < n; 1+=2) for (1 = 0; 1 < n; 1+=2)
result = (result * d[i1]) * d[i+1]; result = result * (d[1] * d[i+1]);
return result; return result;
} }
= Do two loop elements per iteration
® Reduces overhead
m Cycles per element:
eu2: 7.0
o u2r: 3.6
—16 —

15-213, S ‘08

u2: Serial Computation

Computation (length=12)
CCCCCCCCCCC(1 * d[o1) =
di1l) * d[2]) * d[3]) *
d[4]) * d[5]) * d[6]) *
di71) * d[8]) * d[9D) ~*
d[10]) * d[11]D

Performance
m N elements, D cycles/operation
m N*D cycles

- 17 - 15-213, S ‘08

u2r: Reassociated Computation

Performance
m N elements, D cycles/operation
dy d, = (N/2+1)*D cycles

result = result * (d[i] * d[i+1]);H

_ 18- 15-213, S ‘08

Great Reality #5

Computers do more than execute programs

They need to get data in and out
m |/O system critical to program reliability and performance

They communicate with each other over networks

m Many system-level issues arise in presence of network
e Concurrent operations by autonomous processes
® Coping with unreliable media
® Cross platform compatibility
® Complex performance issues

_19- 15-213, S ‘08

Role within Curriculum

CS 412
OS Practicum
CS 415 CS 441 oo &) CS 411 CS 462 ECE 447
Databases Networks P 9 Compilers Graphics Architecture
Systems
\ -~
Network Processes Machlne Code Arithmetic
Protocols Mem. Mgmt ECE 349
Embedded
Systems
Data Reps. Exec. Model g
Memory Model

— 20—

CS 213
Systems

a

CS 123
C Programming

Memory System —

Foundation of Computer
Systems
m Underlying principles for

hardware, software, and
networking

15-213, S ‘08

Course Perspective

Most Systems Courses are Builder-Centric

m Computer Architecture
® Design pipelined processor in Verilog

m Operating Systems
e Implement large portions of operating system

m Compilers
® Write compiler for simple language

m Networking
® Implement and simulate network protocols

_21—

15-213, S ‘08

Course Perspective (Cont.)

Our Course is Programmer-Centric

m Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer

= Enable you to

® Write programs that are more reliable and efficient
® Incorporate features that require hooks into OS
» E.g., concurrency, signal handlers

m Not just a course for dedicated hackers
® We bring out the hidden hacker in everyone

m Cover material in this course that you won’t see elsewhere

22 _ 15-213, S ‘08

	Introduction to Computer Systems
	Course Theme
	Great Reality #1
	Computer Arithmetic
	Great Reality #2
	Assembly Code Example
	Code to Read Counter
	Great Reality #3
	Memory Referencing Bug Example
	Referencing Bug Explanation
	Memory Referencing Errors
	Memory System Performance Example
	The Memory Mountain
	Great Reality #4
	Code Performance Example
	Loop Unrollings
	u2: Serial Computation
	u2r: Reassociated Computation
	Great Reality #5
	Role within Curriculum
	Course Perspective
	Course Perspective (Cont.)

