
Introduction to
Computer Systems

Introduction to
Computer Systems

Topics:Topics:
Theme
Five great realities of computer systems
How this fits within CS curriculum

15-213 S ‘08class01a.ppt

15-213
“The Class That Gives CMU Its Zip!”

Randal E. Bryant
January 15, 2008

– 2 – 15-213, S ‘08

Course ThemeCourse Theme
Abstraction is good, but don’t forget reality!

Most CS courses emphasize abstractionMost CS courses emphasize abstraction
Abstract data types
Asymptotic analysis

These abstractions have limitsThese abstractions have limits
Especially in the presence of bugs
Need to understand underlying implementations

Useful outcomesUseful outcomes
Become more effective programmers

Able to find and eliminate bugs efficiently
Able to tune program performance

Prepare for later “systems” classes in CS & ECE
Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

– 3 – 15-213, S ‘08

Great Reality #1Great Reality #1
IntInt’’ss are not Integers, Floatare not Integers, Float’’s are not s are not RealsReals

ExamplesExamples
Is x2 ≥ 0?

Float’s: Yes!
Int’s:

» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??

Is (x + y) + z = x + (y + z)?
Unsigned & Signed Int’s: Yes!
Float’s:

» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

– 4 – 15-213, S ‘08

Computer ArithmeticComputer Arithmetic
Does not generate random valuesDoes not generate random values

Arithmetic operations have important mathematical
properties

Cannot assume Cannot assume ““usualusual”” propertiesproperties
Due to finiteness of representations
Integer operations satisfy “ring” properties

Commutativity, associativity, distributivity
Floating point operations satisfy “ordering” properties

Monotonicity, values of signs

ObservationObservation
Need to understand which abstractions apply in which
contexts
Important issues for compiler writers and serious application
programmers

– 5 – 15-213, S ‘08

Great Reality #2Great Reality #2
YouYou’’ve got to know assemblyve got to know assembly

Chances are, youChances are, you’’ll never write program in assemblyll never write program in assembly
Compilers are much better & more patient than you are

Understanding assembly key to machineUnderstanding assembly key to machine--level level
execution modelexecution model

Behavior of programs in presence of bugs
High-level language model breaks down

Tuning program performance
Understanding sources of program inefficiency

Implementing system software
Compiler has machine code as target
Operating systems must manage process state

Creating / fighting malware
x86 assembly is the language of choice!

– 6 – 15-213, S ‘08

Assembly Code ExampleAssembly Code Example
Time Stamp CounterTime Stamp Counter

Special 64-bit register in Intel-compatible machines
Incremented every clock cycle
Read with rdtsc instruction

ApplicationApplication
Measure time required by procedure

In units of clock cycles

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

– 7 – 15-213, S ‘08

Code to Read CounterCode to Read Counter
Write small amount of assembly code using GCC’s asm
facility
Inserts assembly code into machine code generated by
compiler
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;
/* Set *hi and *lo to the high and low order bits

of the cycle counter.
*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}
– 8 – 15-213, S ‘08

Great Reality #3Great Reality #3
Memory Matters: Memory Matters: Random Access Memory is anRandom Access Memory is an

unun--physical abstractionphysical abstraction

Memory is not unboundedMemory is not unbounded
It must be allocated and managed
Many applications are memory dominated

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious
Effects are distant in both time and space

Memory performance is not uniformMemory performance is not uniform
Cache and virtual memory effects can greatly affect program
performance
Adapting program to characteristics of memory system can
lead to major speed improvements

– 9 – 15-213, S ‘08

Memory Referencing Bug ExampleMemory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

– 10 – 15-213, S ‘08

Referencing Bug ExplanationReferencing Bug Explanation

C does not implement bounds checking
Out of range write can affect other parts of program state

Saved State
d7 … d4
d3 … d0
a[1]
a[0] 0

1
2
3
4

Location accessed
by fun(i)

– 11 – 15-213, S ‘08

Memory Referencing ErrorsMemory Referencing Errors
C and C++ do not provide any memory protectionC and C++ do not provide any memory protection

Out of bounds array references
Invalid pointer values
Abuses of malloc/free

Can lead to nasty bugsCan lead to nasty bugs
Whether or not bug has any effect depends on system and
compiler
Action at a distance

Corrupted object logically unrelated to one being accessed
Effect of bug may be first observed long after it is generated

How can I deal with this?How can I deal with this?
Program in Java or ML
Understand what possible interactions may occur
Use or develop tools to detect referencing errors

– 12 – 15-213, S ‘08

Memory System Performance
Example
Memory System Performance
Example

Hierarchical memory organization
Performance depends on access patterns

Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

59,393,288 clock cycles 1,277,877,876 clock cycles

21.5 times slower!
(Measured on 2GHz

Intel Pentium 4)

– 13 – 15-213, S ‘08

The Memory MountainThe Memory Mountain

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

8m

2m 51
2k 12

8k 32
k 8k

2k

0

200

400

600

800

1000

1200

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

Stride (words) Working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

L1

L2

Mem

xe

copyij

copyji

– 14 – 15-213, S ‘08

Great Reality #4Great Reality #4
ThereThere’’s more to performance than asymptotic s more to performance than asymptotic

complexitycomplexity

Constant factors matter too!Constant factors matter too!
Easily see 10:1 performance range depending on how code
written
Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
How programs compiled and executed
How to measure program performance and identify
bottlenecks
How to improve performance without destroying code
modularity and generality

– 15 – 15-213, S ‘08

Code Performance ExampleCode Performance Example

Multiply all elements of array
Performance on class machines: ~7.0 clock cycles
per element

Latency of floating-point multiplier

/* Compute product of array elements */
double product(double d[], int n)
{

double result = 1;
int i;
for (i = 0; i < n; i++)

result = result * d[i];
return result;

}

– 16 – 15-213, S ‘08

Loop UnrollingsLoop Unrollings

Do two loop elements per iteration
Reduces overhead

Cycles per element:
u2: 7.0
u2r: 3.6

/* Unroll by 2. Assume n is even */
double product_u2(double d[], int n)
{

double result = 1;
int i;
for (i = 0; i < n; i+=2)
result = (result * d[i]) * d[i+1];

return result;
}

/* Unroll by 2. Assume n is even */
double product_u2r(double d[], int n)
{

double result = 1;
int i;
for (i = 0; i < n; i+=2)
result = result * (d[i] * d[i+1]);

return result;
}

– 17 – 15-213, S ‘08

u2: Serial Computationu2: Serial Computation
Computation (length=12)Computation (length=12)
((((((((((((1 * d[0]) *
d[1]) * d[2]) * d[3]) *
d[4]) * d[5]) * d[6]) *
d[7]) * d[8]) * d[9]) *
d[10]) * d[11])

PerformancePerformance
N elements, D cycles/operation
N*D cycles

*
*

11 dd00
dd11

*
dd22

*
dd33

*
dd44

*
dd55

*
dd66

*
dd77

*
dd88

*
dd99

*
dd1010

*
dd1111

result = (result * d[i]) * d[i+1];

– 18 – 15-213, S ‘08

u2r: Reassociated Computationu2r: Reassociated Computation
PerformancePerformance

N elements, D cycles/operation
(N/2+1)*D cycles

*
*

11

*
*

*
*

*
dd11dd00

*
dd33dd22

*
dd55dd44

*
dd77dd66

*
dd99dd88

*
dd1111dd1010

result = result * (d[i] * d[i+1]);

– 19 – 15-213, S ‘08

Great Reality #5Great Reality #5
Computers do more than execute programsComputers do more than execute programs

They need to get data in and outThey need to get data in and out
I/O system critical to program reliability and performance

They communicate with each other over networksThey communicate with each other over networks
Many system-level issues arise in presence of network

Concurrent operations by autonomous processes
Coping with unreliable media
Cross platform compatibility
Complex performance issues

– 20 – 15-213, S ‘08

Role within CurriculumRole within Curriculum

Foundation of Computer Foundation of Computer
SystemsSystems

Underlying principles for
hardware, software, and
networking

CS 213
Systems

CS 410
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded
Systems

Exec. Model
Memory System

CS 412
OS Practicum

CS 123
C Programming

CS 415
Databases

Data Reps.
Memory Model

CS 462
Graphics

Machine Code Arithmetic

– 21 – 15-213, S ‘08

Course PerspectiveCourse Perspective
Most Systems Courses are BuilderMost Systems Courses are Builder--CentricCentric

Computer Architecture
Design pipelined processor in Verilog

Operating Systems
Implement large portions of operating system

Compilers
Write compiler for simple language

Networking
Implement and simulate network protocols

– 22 – 15-213, S ‘08

Course Perspective (Cont.)Course Perspective (Cont.)
Our Course is ProgrammerOur Course is Programmer--CentricCentric

Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer
Enable you to

Write programs that are more reliable and efficient
Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers
Not just a course for dedicated hackers

We bring out the hidden hacker in everyone
Cover material in this course that you won’t see elsewhere

