Verifying Programs with BDDs

15-213
“The course that gives CMU its Zip!”

Verifying Programs with BDDs

Topics
- Representing Boolean functions with Binary Decision Diagrams
- Application to program verification
Do these functions produce identical results?

How could you find out?

How about exhaustive testing?

```c
int abs(int x) {
    int mask = x>>31;
    return (x ^ mask) + ~mask + 1;
}

int test_abs(int x) {
    return (x < 0) ? -x : x;
}
```
More Examples

```c
int addXY(int x, int y)
{
    return x+y;
}
```

```c
= int addYX(int x, int y)
{
    return y+x;
}
```

```c
int mulXY(int x, int y)
{
    return x*y;
}
```

```c
= int mulYX(int x, int y)
{
    return y*x;
}
```
How Can We Verify Programs?

Testing
- Exhaustive testing not generally feasible
- Currently, programs only tested over small fraction of possible cases

Formal Verification
- Mathematical “proof” that code is correct

Did Pythagoras show that \(a^2 + b^2 = c^2 \) by testing?
View computer word as 32 separate bit values
- Each output becomes Boolean function of inputs
Do these functions produce identical results?

```c
int bitOr(int x, int y)
{
    return ~(~x & ~y);
}

int test_bitOr(int x, int y)
{
    return x | y;
}
```

<table>
<thead>
<tr>
<th>variable</th>
<th>expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>~x</td>
</tr>
<tr>
<td>y</td>
<td>~y</td>
</tr>
<tr>
<td>v1</td>
<td>~x</td>
</tr>
<tr>
<td>v2</td>
<td>~y</td>
</tr>
<tr>
<td>v3</td>
<td>v1 & v2</td>
</tr>
<tr>
<td>v4</td>
<td>~v3</td>
</tr>
<tr>
<td>v5</td>
<td>x</td>
</tr>
<tr>
<td>t</td>
<td>v4 == v5</td>
</tr>
</tbody>
</table>

Straight-Line Evaluation
Tabular Function Representation

- List every possible function value

Complexity

- Function with n variables
Algebraic Function Representation

\[f(x_1, x_2, x_3) = (x_1 + x_2) \cdot x_3 \]

Boolean Algebra

Complexity

- Representation
- Determining properties of function
 - E.g., deciding whether two expressions are equivalent
Tree Representation

Truth Table

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decision Tree

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value

Complexity
Ordered Binary Decision Diagrams

Initial Tree

Reduced Graph

Canonical representation of Boolean function

- Two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time
- Desirable property: simplest form is canonical.
Example Functions

Constants
- 0: Unique unsatisfiable function
- 1: Unique tautology

Variable
- Treat variable as function

Typical Function
- \((x_1 + x_2) \cdot x_4\)
- No vertex labeled \(x_3\)
- Independent of \(x_3\)
- Many subgraphs shared

Odd Parity
- Linear representation

- 11 -
More Complex Functions

Functions
- Add 4-bit words \(a \) and \(b \)
- Get 4-bit sum \(S \)
- Carry output bit \(\text{Cout} \)

Shared Representation
- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder
- Linear growth!
Symbolic Execution

(3-bit word size)

\[v_1 = \neg x \]

\[v_2 = \neg y \]
Symbolic Execution (cont.)

\[v_3 = v_1 \land v_2 \]

\[v_4 = \neg v_3 \]

\[v_5 = x \lor y \]

\[t = v_4 == v_5 \]

1
Counterexample Generation

Find values of x & y for which these programs produce different results

```c
int bitOr(int x, int y)
{
    return ~(~x & ~y);
}
```

```c
int bitXor(int x, int y)
{
    return x ^ y;
}
```

Straight-Line Evaluation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
</tr>
<tr>
<td>$v_1 = \sim x$</td>
<td></td>
</tr>
<tr>
<td>$v_2 = \sim y$</td>
<td></td>
</tr>
<tr>
<td>$v_3 = v_1 & v_2$</td>
<td></td>
</tr>
<tr>
<td>$v_4 = \sim v_3$</td>
<td></td>
</tr>
<tr>
<td>$v_5 = x ^ y$</td>
<td></td>
</tr>
<tr>
<td>$t = v_4 == v_5$</td>
<td></td>
</tr>
</tbody>
</table>
Symbolic Execution

\[v_4 = \neg v_3 \]

\[v_5 = x \land y \]

\[t = v_4 == v_5 \]

\[x = 111 \]
\[y = 001 \]
Performance: Good

```c
int addXY(int x, int y)
{
    return x+y;
}
```

```c
int addYX(int x, int y)
{
    return y+x;
}
```

Graph

- **X-axis**: Word Size
- **Y-axis**: Seconds
- **Legend**:
 - Green squares: Enumerate
 - Red diamonds: BDD

- 0 8 16 24 32
- 0 100 200 300 400 500 600 700 800 900 1000

Performance: Bad

```c
int mulXY(int x, int y)
{
    return x*y;
}
```

```c
int mulYX(int x, int y)
{
    return y*x;
}
```

![Graph showing performance comparison between Enumerate and BDD methods with varying word sizes.](image)
Why Is Multiplication Slow?

Multiplication function intractable for BDDs
- Exponential growth, regardless of variable ordering

Node Counts

<table>
<thead>
<tr>
<th>Bits</th>
<th>Add</th>
<th>Mult</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>21</td>
<td>155</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>14560</td>
</tr>
</tbody>
</table>
What if Multiplication were Easy?

```c
int factorK(int x, int y)
{
    int K = XXXX...X;
    int rangeOK =
        1 < x && x <= y;
    int factorOK =
        x*y == K;
    return
        !(rangeOK && factorOK);
}
```

```c
int one(int x, int y)
{
    return 1;
}
```
Dealing with Conditionals

During Evaluation, Keep Track of:
- **Current Context:** Under what condition would code be evaluated
- **Definedness (for each variable)**
 - Has it been assigned a value

```c
int abs(int x)
{
    int r;
    if (x < 0)
        r = -x;
    else
        r = x;
    return r;
}
```

<table>
<thead>
<tr>
<th>Context</th>
<th>Definedness</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t1 = x < 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v1 = -x</td>
<td>t1</td>
<td>0</td>
</tr>
<tr>
<td>r = v1</td>
<td>t1</td>
<td>t1</td>
</tr>
<tr>
<td>r = x</td>
<td>!t1</td>
<td>1</td>
</tr>
<tr>
<td>v2 = r</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Dealing with Loops

Unroll

- Turn into bounded sequence of conditionals
 - Default limit = 33
- Signal runtime error if don’t complete within limit

Unrolled

```c
int ilog2(unsigned x)
{
    int r = -1;
    while (x) {
        r++; x >>= 1;
    }
    return r;
}

int ilog2(unsigned x)
{
    int r = -1;
    if (x) {
        r++; x >>= 1;
    } else return r;
    if (x) {
        r++; x >>= 1;
    } else return r;
    . . .
    if (x) {
        r++; x >>= 1;
    } else return r;
    error();
}
```
Evaluation

Strengths

- Provides 100% guarantee of correctness
- Performance very good for simple arithmetic functions

Weaknesses

- Important integer functions have exponential blowup
- Not practical for programs that build and operate on large data structures
Some History

Origins

- **Lee 1959, Akers 1976**
 - Idea of representing Boolean function as BDD

- **Hopcroft, Fortune, Schmidt 1978**
 - Recognized that ordered BDDs were like finite state machines
 - Polynomial algorithm for equivalence

- **Bryant 1986**
 - Proposed as useful data structure + efficient algorithms

- **McMillan 1987**
 - Developed symbolic model checking
 - Method for verifying complex sequential systems

- **Bryant 1991**
 - Proved that multiplication has exponential BDD
 - No matter how variables are ordered