Verifying Programs with BDDs

Topics
- Representing Boolean functions with Binary Decision Diagrams
- Application to program verification

Verification Example
Do these functions produce identical results?
How could you find out?
How about exhaustive testing?

int abs(int x) {
 int mask = x>>31;
 return (x ^ mask) + ~mask + 1;
}

int test_abs(int x) {
 return (x < 0) ? -x : x;
}

How Can We Verify Programs?

Testing
- Exhaustive testing not generally feasible
- Currently, programs only tested over small fraction of possible cases

Formal Verification
- Mathematical “proof” that code is correct

Did Pythagoras show that \(a^2 + b^2 = c^2 \) by testing?

More Examples

int addXY(int x, int y) {
 return x+y;
}

int addYX(int x, int y) {
 return y+x;
}

int mulXY(int x, int y) {
 return x*y;
}

int mulYX(int x, int y) {
 return y*x;
}
Bit-Level Program Verification

- View computer word as 32 separate bit values
- Each output becomes Boolean function of inputs

```c
int abs(int x) {
    int mask = x >> 31;
    return (x ^ mask) + ~mask + 1;
}
```

Extracting Boolean Representation

Do these functions produce identical results?

```c
int abs(int x) {
    int mask = x >> 31;
    return (x ^ mask) + ~mask + 1;
}
```

```c
int bitOr(int x, int y) {
    return ~(~x & ~y);
}
```

```c
int test_bitOr(int x, int y) {
    return x | y;
}
```

Straight-Line Evaluation

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>v1</th>
<th>v2</th>
<th>v3</th>
<th>v4</th>
<th>v5</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- v1 = ~x
- v2 = ~y
- v3 = v1 & v2
- v4 = ~v3
- v5 = x | y
- t = v4 == v5

Tabular Function Representation

- List every possible function value

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>001</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Algebraic Function Representation

- f(x1, x2, x3) = (x1 + x2) · x3
- Boolean Algebra

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>001</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Complexity

- Representation
- Determining properties of function
 - E.g., deciding whether two expressions are equivalent
Tree Representation

Truth Table

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value

Decision Tree

Ordered Binary Decision Diagrams

Initial Tree

Reduced Graph

Canonical representation of Boolean function

- Two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time
- Desirable property:
 simplest form is canonical.

Example Functions

- Constants
 - 0: Unique unsatisfiable function
 - 1: Unique tautology

- Variable
 - Treat variable as function

- Typical Function
 - $(x_1 + x_2) \cdot x_3$
 - No vertex labeled x_3
 - Independent of x_3
 - Many subgraphs shared

- Odd Parity
 - Linear representation

More Complex Functions

Functions

- Add 4-bit words a and b
- Get 4-bit sum S
- Carry output bit $Cout$

Shared Representation

- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder
- Linear growth!
Symbolic Execution (3-bit word size)

v1 = ~x

v2 = ~y

v3 = v1 & v2

v4 = ~v3

v5 = x | y

t = v4 == v5

Counterexample Generation

Find values of x & y for which these programs produce different results

int bitOr(int x, int y)
{
 return ~(~x & ~y);
}

int bitXor(int x, int y)
{
 return x ^ y;
}

Straight-Line Evaluation

x

y

v1 = ~x

v2 = ~y

v3 = v1 & v2

v4 = ~v3

v5 = x ^ y

t = v4 == v5

Symbolic Execution

x = 111
y = 001
Performance: Good

int addXY(int x, int y) {
 return x+y;
}

int addYX(int x, int y) {
 return y+x;
}

Performance: Bad

int mulXY(int x, int y) {
 return x*y;
}

int mulYX(int x, int y) {
 return y*x;
}

Why Is Multiplication Slow?

Multiplication function intractable for BDDs
- Exponential growth, regardless of variable ordering

What if Multiplication were Easy?

int factorK(int x, int y) {
 int K = XXXX...X;
 int rangeOK =
 1 < x && x <= y;
 int factorOK =
 x*y == K;
 return
 !(rangeOK && factorOK);
}

int one(int x, int y) {
 return 1;
}
Dealing with Conditionals

During Evaluation, Keep Track of:

- Current Context: Under what condition would code be evaluated
- Definedness (for each variable)
 - Has it been assigned a value

int abs(int x) {
 int r;
 if (x < 0)
 r = -x;
 else
 r = x;
 return r;
}

<table>
<thead>
<tr>
<th>Context</th>
<th>r defined</th>
<th>r value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t1 = x<0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v1 = -x</td>
<td>t1</td>
<td>0</td>
</tr>
<tr>
<td>r = v1</td>
<td>t1</td>
<td>t1?v1:0</td>
</tr>
<tr>
<td>r = x</td>
<td>!t1</td>
<td>t1?v1:x</td>
</tr>
<tr>
<td>v2 = r</td>
<td>1</td>
<td>t1?v1:x</td>
</tr>
</tbody>
</table>

Dealing with Loops

Unroll

- Turn into bounded sequence of conditionals
 - Default limit = 33
- Signal runtime error if don’t complete within limit

int ilog2(unsigned x) {
 int r = -1;
 while (x) {
 r++; x >>= 1;
 }
 return r;
}

Unrolled

int ilog2(unsigned x) {
 int r = -1;
 if (x) {
 r++; x >>= 1;
 } else return r;
 if (x) {
 r++; x >>= 1;
 } else return r;
 ... if (x) {
 r++; x >>= 1;
 } else return r;
 error();
}

Evaluation

Strengths

- Provides 100% guarantee of correctness
- Performance very good for simple arithmetic functions

Weaknesses

- Important integer functions have exponential blowup
- Not practical for programs that build and operate on large data structures

Some History

Origins

- Lee 1959, Akers 1976
 - Idea of representing Boolean function as BDD
- Hopcroft, Fortune, Schmidt 1978
 - Recognized that ordered BDDs were like finite state machines
 - Polynomial algorithm for equivalence
- Bryant 1986
 - Proposed as useful data structure + efficient algorithms
- McMillan 1987
 - Developed symbolic model checking
 - Method for verifying complex sequential systems
- Bryant 1991
 - Proved that multiplication has exponential BDD
 - No matter how variables are ordered