15-213, Spring 2008
Lab Assignment L1: Manipulating Bits
Assigned: Jan. 15, Due: Wed., Jan. 30, 11:59PM

Randy BryantRandy.Bryant@cs.cmu.edu)is the lead person for this assignment.

1 Introduction

The purpose of this assignment is to become more familidr kittlevel representations of common pat-
terns, integers, and floating-point numbers. You'll do tiwssolving a series of programming “puzzles.”
Many of these puzzles are quite artificial, but you'll find yself thinking much more about bits in working
your way through them.

1.1 Logistics

This is an individual project. All handins are electronidadfications and corrections will be posted on the
Autolab message board.

1.2 Creating your Autolab Account

All 15-213 labs are being offered this term through a Web iserdeveloped by Prof. David O’Hallaron
calledAutolah Before you can download your lab materials, you will needr&ate your Autolab account.
Point your browser at the Autolab front page

http://autolab.cs.cmu.edu

and select the “15213-s08” link. Apache will prompt you farseer name and password. Enter your Andrew
login ID, leave the password field blank, and press “OK”". lfiyare on Autolab’s list of registered students,
you will be directed to the Autolab “Create” page, where yall be asked to enter a password, nickname,
and email address. After you enter this information, Apaefiigprompt you again for your user name and
password. This time, enter your Andrew login ID and the pasdwyou just registered with Autolab, and
then press “OK”. You will be sent to the main Autolab page fostcourse, which you should bookmark for
future use.

A couple of important notes on creating your account:

e Autolab passwords are encrypted on the network and therseo/gou can safely use your Andrew
password as your Autolab password if you don’t want to haweeraber another password.

¢ After you have created your account, you can change youmoads nickname, and email address
anytime by visiting the Autolab “Update” page.

¢ If you added the class late, you might not be included in Aali@l list of valid students, and thus won't
be redirected to the Autolab “Create” page. If this happprss send email ta5-213-staff@cs.cmu.edu
requesting an Autolab account, and someone will add youettigh

1.3 Obtaining your Lab Materials

Your lab materials are contained in a Unix tar file calledalab-handout.tar , which you can down-
load from Autolab. After logging in to Autolab through thefit page

http://autolab.cs.cmu.edu

you can retrieve thdatalab-handout.tar file by selecting “Download lab materials” and then hitting
the “Go” button.

Start by copyingdatalab-handout.tar to a (protected) directory in which you plan to do your work.
Then give the commandtdr xvf datalab-handout.tar ". This will create a directory called

datalab-handout that contains a number of files. The only file you will be molify and handing
in is bits.c
WARNING : Do not let the Windows WinZip program open up yotar file (many web browsers are set

to do this automatically). Instead, save the file to your Al8atory and use the Linutar program to
extract the files.

The filebtest.c contains code that performs a simple, non-exhaustive abfettle functional correctness
of your code. The filREADMIEontains additional documentation ab@atEsT. Use the commanthake
to generate the test code and run it with the commAstdst

The included prograrmpLc can be used to check your solutions for compliance with tiiingprules. The
included programssHow andFsHOW can be used to help examine the bit representations of inéege
floating point numbers.

The files in the subdirectoripddcheck implement the BDD checker, a tool that formally verifies your
code. The remaining files are used to build the progeamsT.

Thebits.c file contains a skeleton for each of the 15 programming pgz2eur assignment is to com-
plete each function skeleton according to a strict set afanmming rules, intended to help you understand
how values are represented at the bit-level and how to mehit patterns using standard C operations.

2 Evaluation

Your code will be compiled wittecc and exhaustively tested with the BDD checker. Your scoré il
computed out of a maximum of 75 points based on the followistridution:

2

40 Correctness of code.
30 Performance of code, based on number of operators usedhirfugaation.

5 Style points, based on your instructor’s subjective evanaof the quality of your solutions and your
comments.

The 15 puzzles you must solve have been given a difficultpgdietween 1 and 4, such that their weighted
sum totals to 40.

The code irBTEST simply tests your functions for a number of different cage®. most functions, the num-
ber of possible argument combinations far exceeds whatidmitested exhaustively. To provide complete
coverage, we have created an experimeiotahal verificationprogram,CBIT that, in effect, tests your func-
tions for all possible combinations of arguments. It doés iy viewing each bit of the function result as
a Boolean function of the bits comprising the function arguats. It uses a data structure knowrBasary
Decision DiagramgBDDs) (R. E. Bryant|EEE Transactions on Computer8ugust, 1986) to represent
these Boolean functions in a way that the program can efflgieompare the results of your functions with
those of a set of reference solutions. If the bit-level fioreg match, then the two C functions compute
identical results. Otherwis&BIT can generate aounterexamplei.e., a set of function arguments where
your function will produce a different result than the reigce solution.

You do not invokecBIT directly. Instead, there is a series of Perl scripts thatigetnd evaluate the calls to
it. Execute

unix> ./bddcheck/check.pl -f fun
to check functiorfun . Execute
unix> ./bddcheck/check.pl

to check all of your functions.

Note: The Perl scripts are a bit picky about the formatting of yoode. They expect the function to open
with a line of the form:

int fun (...)
or
unsigned fun (...)

and to end with a single right brace in the leftmost column.atT$hould be the only right brace in the
leftmost column of your function.

You will get full credit for a puzzle if the BDD checker deteimas that your solution is correct, and no
credit otherwise. The formal verification provided by theBbhecker will show you that there are no bugs
lurking in your code. You'll find yourself wishing you coulddhis kind of testing with every program you

write. Unfortunately, BDDs can handle only relatively simfunctions such as the ones you are writing for
this assignment. Beyond this, the BDDs get too large to sgprteand manipulate.

Regarding performance, our main concern at this point ircthese is that you can get the right answer.
However, we want to instill in you a sense of keeping thingstast and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we warnyoe more clever. Thus, for each function
we've established a maximum number of operators that yoalboeed to use for each function. Assign-
ment operators €’) aren’t counted. This limit is very generous and is destypaly to catch egregiously
inefficient solutions. You will receive two points for eaalmttion that satisfies the operator limit.

Finally, we've reserved 5 points for a subjective evaluatid the style of your solutions and your com-
menting. Your solutions should be as clean and straightfoivas possible. Your comments should be
informative, describing the strategy behind your soluttout they need not be extensive.

3 Bit and Integer Manipulations

The first series of puzzles involve creating common bit pagte&and manipulating two’s complement rep-
resentations of integers. These puzzles have the stre¢esif programming rules. You may only use
straightlinecode (i.e., no loops or conditionals) and a limited numbet afithmetic and logical operators.
Specifically, you arenly allowed to use the following operators:

:!~&‘|+<<>>

A few of the functions further restrict this list. Also, yovesonly allowed to use constant values between 0
and 255 Ox0 to OxFF).. See the comments lrits.c for detailed rules and a discussion of the desired
coding style.

You may not use any control structures such as loops, funcidls, and conditionals within your code.
You also may not do any casting or use any data types otheithanYou may not use any unions, structs,
or arrays. You may assume that data type is 32 bits long and encodes integers in two’s complement
format. Both left and right shifts require a shift amountvsetn 0 and 31, and right shifts are performed
arithmetically.

3.1 Partl: Bit Manipulations

Table 1 describes a set of functions that manipulate andsetstof bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, ahé tMax ops” field gives the maximum number
of operators you are allowed to use to implement each fumct®ee the comments bits.c for more
details on the desired behavior of the functions. You may idéer to the test functions bests.c . These
are used as reference functions to express the correctibebéyour functions, although they don't satisfy
the coding rules for your functions.

Name Description Rating | Max Ops
bitAnd(x,y) X & y using only|] and” 1 8
thirdBits() Create mask with every third bit setto 1 1 8
conditional(x,y,z) X?2y:z 3 16
logicalShift(x,n) Logical right shift ofx by n 3 16
isNonZero(x) x 1= 0 without using! 4 10
leftBitCount(x) Number of 1s on left (most significant) endxf| 4 50

Table 1: Bit-Level Manipulation Functions.

Name Description Rating | Max Ops
isTmin(x) Is x the minimum two’s complement integer?, 1 8
fitsShort(x) Canx be expressed as a 16-bit integer? 1 8
sign(x) Indicate whethek is negative, zero, or positive 2 10
isGreater(x,y) X >y? 3 24
ezThreeFourths(x) 3xx/4 3 12
trueThreeFourths(x) 3x/4 without overflow 4 20

Table 2: Arithmetic Functions

3.2 Part ll: Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the t@aplement representation of integers. Again,
refer to the comments ibits.c and the reference versionstests.c for more information.

4 Floating-Point Operations

For this part of the assignment, you will implement some cammingle-precision floating-point opera-
tions. In this section, you are allowed to use standard obstructures (conditionals, loops), and you may
use bothint andunsigned data types, including arbitrary unsigned and integer @oist You may
not use any unions, structs, or arrays. Most significanthy snay not use any floating point data types,
operations, or constants. Instead, any floating-pointamkmwill be passed to the function as having type
unsigned , and any returned floating-point value will be of typesigned . Your code should perform
the bit manipulations that implement the specified floatiompoperations.

4.1 Part lll: Floating-Point Arithmetic

Table 3 describes a set of functions that operate on thevstl-tepresentations of floating-point numbers.
Refer to the comments ioits.c and the reference versionstists.c ~ for more information.

The included progranfsHow helps you understand the structure of floating point numbeting you
decipher the results from the BDD checker on floating-ponabfems. When the BDD checker finds a

Name Description| Rating | Max Ops
float_abs(uf) If | 2 10
float_twice(uf) 2+ f 4 30
float_f2i(uf) (int) f 4 30

Table 3: Floating-Point Functions. Valtigis the floating-point number having the same bit representat
as the unsigned integef .

counterexample, it prints the decimal value of argumerit{a) cause a discrepancy between the puzzle
code and the reference version. To see what these bit pattepnesent as a floating-point number, use
FSHOW, e.g.:

unix>./fshow 2080374784

Floating point value 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = f8, frac tion = 000000
Normalized. 1.0000000000 X 27(121)

You can also giveesHow hexadecimal and floating point values, and it will deciplimirtbit structure.

Functiondloat_abs andfloat_twice must handle the full range of possible argument valuesjdicl
ing not-a-number (NaN) and infinity. The IEEE standard doatsspecify precisely how to handle NaN's,
and the IA32 behavior is a bit obscure. We will follow a convem that for any function returning a NaN
value, it will return the one with bit representatiOm7FC00000 . Similarly, when functiorfloat_f2i
encounters a humber that is either too big to represent &Ny then it should returx80000000 .

5 Advice

You can work on this assignment using one of the class fish imeglor one of the the Andrew Linux
servers gsh linux.andrew.cmu.edu). The BDD checker and theLc program are distributed as
32-bit Linux executables, and so you'll need to be workingaarompatible Linux machine in order to use
those tools. In general, we recommend that you work on thenfigbhines, since these are the systems
you'll be using for most of the labs in this course.

The bLc program, a modified version of an ANSI C compiler, will be usectheck your programs for
compliance with the coding style rules. The typical usage is

unix> ./dlc bits.c
Type./dic -help for a list of command line options. The README file is also Halp

e ThebDLC program runs silently unless it detects a problem.

¢ Andrew Linux machines have a program calladr/local/bin/dlc , Which isnotthe same as
ourDLC program. So always rupnLc using a full path name:

6

unix> ./dlc bits.c

e Don't include the<stdio.h> header file in youbits.c file, as it confuse®LC and results in
some non-intuitive error messages. You will still be ablaeiseprintf in your bits.c file for
debugging without including thestdio.h> header, althouglecc will print a warning that you
can ignore.

e TheDLC program enforces a stricter form of declarations than iscse for C++ or Java or even
that is enforced bycc. In particular, any declaration must appear in a block (wlwat enclose in
curly braces) before any statement that is not a declaraionexample, it will complain about the
following code:

int foo(int x)

{
int a = x;
a *= 3; |/ = Statement that is not a declaration * [
int b = a;, / =* ERROR: Declaration not allowed here */
}

The BDD checker cannot handle functions that call othertfans, includingprintf . You should use
BTEST to evaluate code with debuggimgintf statements. Be sure to remove any of these debugging
statements before you hand in.

Check the fileREADMEor documentation on running theresT program. You'll find it helpful to work
through the functions one at a time, testing each one as yo¥a@ocan use thef flag to instructBTEST

to test only a single function, e.g/ptest -f bitAnd . You can feed it specific function arguments
using the option flagsl , -2 , and-3 . Also, the-g option is a nice way to get a compact summary of the
correctness of each function.

The testing provided bgTEST is especially weak for the floating-point problems, wherer¢hare tricky
issues of denormalized numbers, rounding, and overflow.ttus8DD checker to detect problems in your
code, but then useTeEST andrsHow (or ISHOW for integer problems) to help you better understand what'’s
going on.

6 Hand In Instructions

Unlike other courses you may have taken in the past, in thisseoyou may handin your work as often as
you like until the due date of the lab. There are two types otihas: unofficial andofficial handins.

¢ Unofficial handins. As you work on the assignment you can use the driver proghaver.pl to
stream your current results to the Autolab server to be ajgul on the class status Web page. The
driver is the same program our autograder calls when it grgder handin. If your userid isovik
then typing

unix> ./driver.pl -u bovik

will stream your results (in the form of an ASCII text line wallcanautoresult string to the Autolab
server. The autoresult strings are logged, and the lastesutits from each student are periodically
summarized on the class status Web page, under each studlatdlab nickname.

The Autolab page provides options that allow you to view tlas< status page (“View class status
page”) as well as the complete history of your autoresultrssions (“View your autoresult history”).

¢ Official handins. The autoresult strings sent from your copy of the driver progare unofficial and
just for fun. To receive credit, you will need to upload ydaits.c file using the Autolab option
“Handin your work for credit”. Each time you handin your cotiee server will run the autograder on
your handin file and produce a grade report (it also logs adialffautoresult string for the class status
page). The server archives each of your submissions antimgsgrade reports, which you can view
anytime using the “View your handin history and scores” apti

Notes:

e At any point in time, your most recently uploaded file is yoffiaial handin. You may handin as
often as you like.

e Each time you handin, you should use the “View your handitohysand scores” option to confirm
that your handin was properly autograded.

e You must remove any extraneous print statements from pissuic ~ file before handing in.

