
15-213, Spring 2008
Lab Assignment L1: Manipulating Bits

Assigned: Jan. 15, Due: Wed., Jan. 30, 11:59PM

Randy Bryant (Randy.Bryant@cs.cmu.edu) is the lead person for this assignment.

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of common pat-
terns, integers, and floating-point numbers. You’ll do thisby solving a series of programming “puzzles.”
Many of these puzzles are quite artificial, but you’ll find yourself thinking much more about bits in working
your way through them.

1.1 Logistics

This is an individual project. All handins are electronic. Clarifications and corrections will be posted on the
Autolab message board.

1.2 Creating your Autolab Account

All 15-213 labs are being offered this term through a Web service developed by Prof. David O’Hallaron
calledAutolab. Before you can download your lab materials, you will need tocreate your Autolab account.
Point your browser at the Autolab front page

http://autolab.cs.cmu.edu

and select the “15213-s08” link. Apache will prompt you for auser name and password. Enter your Andrew
login ID, leave the password field blank, and press “OK”. If you are on Autolab’s list of registered students,
you will be directed to the Autolab “Create” page, where you will be asked to enter a password, nickname,
and email address. After you enter this information, Apachewill prompt you again for your user name and
password. This time, enter your Andrew login ID and the password you just registered with Autolab, and
then press “OK”. You will be sent to the main Autolab page for this course, which you should bookmark for
future use.

A couple of important notes on creating your account:

1

• Autolab passwords are encrypted on the network and the server, so you can safely use your Andrew
password as your Autolab password if you don’t want to have remember another password.

• After you have created your account, you can change your password, nickname, and email address
anytime by visiting the Autolab “Update” page.

• If you added the class late, you might not be included in Autolab’s list of valid students, and thus won’t
be redirected to the Autolab “Create” page. If this happens,just send email to15-213-staff@cs.cmu.edu
requesting an Autolab account, and someone will add you to the list.

1.3 Obtaining your Lab Materials

Your lab materials are contained in a Unix tar file calleddatalab-handout.tar , which you can down-
load from Autolab. After logging in to Autolab through the front page

http://autolab.cs.cmu.edu

you can retrieve thedatalab-handout.tar file by selecting “Download lab materials” and then hitting
the “Go” button.

Start by copyingdatalab-handout.tar to a (protected) directory in which you plan to do your work.
Then give the command “tar xvf datalab-handout.tar ”. This will create a directory called
datalab-handout that contains a number of files. The only file you will be modifying and handing
in is bits.c .

WARNING : Do not let the Windows WinZip program open up your.tar file (many web browsers are set
to do this automatically). Instead, save the file to your AFS directory and use the Linuxtar program to
extract the files.

The filebtest.c contains code that performs a simple, non-exhaustive checkof the functional correctness
of your code. The fileREADMEcontains additional documentation aboutBTEST. Use the commandmake
to generate the test code and run it with the command./btest .

The included programDLC can be used to check your solutions for compliance with the coding rules. The
included programsISHOW andFSHOW can be used to help examine the bit representations of integer and
floating point numbers.

The files in the subdirectorybddcheck implement the BDD checker, a tool that formally verifies your
code. The remaining files are used to build the programBTEST.

Thebits.c file contains a skeleton for each of the 15 programming puzzles. Your assignment is to com-
plete each function skeleton according to a strict set of programming rules, intended to help you understand
how values are represented at the bit-level and how to manipulate bit patterns using standard C operations.

2 Evaluation

Your code will be compiled withGCC and exhaustively tested with the BDD checker. Your score will be
computed out of a maximum of 75 points based on the following distribution:

2

40 Correctness of code.

30 Performance of code, based on number of operators used in each function.

5 Style points, based on your instructor’s subjective evaluation of the quality of your solutions and your
comments.

The 15 puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted
sum totals to 40.

The code inBTEST simply tests your functions for a number of different cases.For most functions, the num-
ber of possible argument combinations far exceeds what could be tested exhaustively. To provide complete
coverage, we have created an experimentalformal verificationprogram,CBIT that, in effect, tests your func-
tions for all possible combinations of arguments. It does this by viewing each bit of the function result as
a Boolean function of the bits comprising the function arguments. It uses a data structure known asBinary
Decision Diagrams(BDDs) (R. E. Bryant,IEEE Transactions on Computers, August, 1986) to represent
these Boolean functions in a way that the program can efficiently compare the results of your functions with
those of a set of reference solutions. If the bit-level functions match, then the two C functions compute
identical results. Otherwise,CBIT can generate acounterexample, i.e., a set of function arguments where
your function will produce a different result than the reference solution.

You do not invokeCBIT directly. Instead, there is a series of Perl scripts that setup and evaluate the calls to
it. Execute

unix> ./bddcheck/check.pl -f fun

to check functionfun . Execute

unix> ./bddcheck/check.pl

to check all of your functions.

Note: The Perl scripts are a bit picky about the formatting of yourcode. They expect the function to open
with a line of the form:

int fun (...)

or

unsigned fun (...)

and to end with a single right brace in the leftmost column. That should be the only right brace in the
leftmost column of your function.

You will get full credit for a puzzle if the BDD checker determines that your solution is correct, and no
credit otherwise. The formal verification provided by the BDD checker will show you that there are no bugs
lurking in your code. You’ll find yourself wishing you could do this kind of testing with every program you

3

write. Unfortunately, BDDs can handle only relatively simple functions such as the ones you are writing for
this assignment. Beyond this, the BDDs get too large to represent and manipulate.

Regarding performance, our main concern at this point in thecourse is that you can get the right answer.
However, we want to instill in you a sense of keeping things asshort and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you areallowed to use for each function. Assign-
ment operators (‘=’) aren’t counted. This limit is very generous and is designed only to catch egregiously
inefficient solutions. You will receive two points for each function that satisfies the operator limit.

Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, describing the strategy behind your solution, but they need not be extensive.

3 Bit and Integer Manipulations

The first series of puzzles involve creating common bit patterns and manipulating two’s complement rep-
resentations of integers. These puzzles have the strictestset of programming rules. You may only use
straightlinecode (i.e., no loops or conditionals) and a limited number ofC arithmetic and logical operators.
Specifically, you areonly allowed to use the following operators:

= ! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are only allowed to use constant values between 0
and 255 (0x0 to 0xFF).. See the comments inbits.c for detailed rules and a discussion of the desired
coding style.

You may not use any control structures such as loops, function calls, and conditionals within your code.
You also may not do any casting or use any data types other thanint . You may not use any unions, structs,
or arrays. You may assume that data typeint is 32 bits long and encodes integers in two’s complement
format. Both left and right shifts require a shift amount between 0 and 31, and right shifts are performed
arithmetically.

3.1 Part I: Bit Manipulations

Table 1 describes a set of functions that manipulate and testsets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function. See the comments inbits.c for more
details on the desired behavior of the functions. You may also refer to the test functions intests.c . These
are used as reference functions to express the correct behavior of your functions, although they don’t satisfy
the coding rules for your functions.

4

Name Description Rating Max Ops
bitAnd(x,y) x & y using only| and˜ 1 8
thirdBits() Create mask with every third bit set to 1 1 8
conditional(x,y,z) x ? y : z 3 16
logicalShift(x,n) Logical right shift ofx by n 3 16
isNonZero(x) x != 0 without using! 4 10
leftBitCount(x) Number of 1s on left (most significant) end ofx 4 50

Table 1: Bit-Level Manipulation Functions.

Name Description Rating Max Ops
isTmin(x) Is x the minimum two’s complement integer? 1 8
fitsShort(x) Canx be expressed as a 16-bit integer? 1 8
sign(x) Indicate whetherx is negative, zero, or positive 2 10
isGreater(x,y) x > y ? 3 24
ezThreeFourths(x) 3* x/4 3 12
trueThreeFourths(x) 3x/4 without overflow 4 20

Table 2: Arithmetic Functions

3.2 Part II: Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’scomplement representation of integers. Again,
refer to the comments inbits.c and the reference versions intests.c for more information.

4 Floating-Point Operations

For this part of the assignment, you will implement some common single-precision floating-point opera-
tions. In this section, you are allowed to use standard control structures (conditionals, loops), and you may
use bothint and unsigned data types, including arbitrary unsigned and integer constants. You may
not use any unions, structs, or arrays. Most significantly, you may not use any floating point data types,
operations, or constants. Instead, any floating-point operand will be passed to the function as having type
unsigned , and any returned floating-point value will be of typeunsigned . Your code should perform
the bit manipulations that implement the specified floating point operations.

4.1 Part III: Floating-Point Arithmetic

Table 3 describes a set of functions that operate on the bit-level representations of floating-point numbers.
Refer to the comments inbits.c and the reference versions intests.c for more information.

The included programFSHOW helps you understand the structure of floating point numbers, letting you
decipher the results from the BDD checker on floating-point problems. When the BDD checker finds a

5

Name Description Rating Max Ops
float_abs(uf) |f | 2 10
float_twice(uf) 2* f 4 30
float_f2i(uf) (int) f 4 30

Table 3: Floating-Point Functions. Valuef is the floating-point number having the same bit representation
as the unsigned integeruf .

counterexample, it prints the decimal value of argument(s)that cause a discrepancy between the puzzle
code and the reference version. To see what these bit patterns represent as a floating-point number, use
FSHOW, e.g.:

unix>./fshow 2080374784

Floating point value 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = f8, frac tion = 000000
Normalized. 1.0000000000 X 2ˆ(121)

You can also giveFSHOWhexadecimal and floating point values, and it will decipher their bit structure.

Functionsfloat_abs andfloat_twice must handle the full range of possible argument values, includ-
ing not-a-number (NaN) and infinity. The IEEE standard does not specify precisely how to handle NaN’s,
and the IA32 behavior is a bit obscure. We will follow a convention that for any function returning a NaN
value, it will return the one with bit representation0x7FC00000 . Similarly, when functionfloat_f2i
encounters a number that is either too big to represent or is aNaN, then it should return0x80000000 .

5 Advice

You can work on this assignment using one of the class fish machines or one of the the Andrew Linux
servers (ssh linux.andrew.cmu.edu). The BDD checker and theDLC program are distributed as
32-bit Linux executables, and so you’ll need to be working ona compatible Linux machine in order to use
those tools. In general, we recommend that you work on the fishmachines, since these are the systems
you’ll be using for most of the labs in this course.

The DLC program, a modified version of an ANSI C compiler, will be usedto check your programs for
compliance with the coding style rules. The typical usage is

unix> ./dlc bits.c

Type./dlc -help for a list of command line options. The README file is also helpful.

• TheDLC program runs silently unless it detects a problem.

• Andrew Linux machines have a program called/usr/local/bin/dlc , which isnot the same as
our DLC program. So always runDLC using a full path name:

6

unix> ./dlc bits.c

• Don’t include the<stdio.h> header file in yourbits.c file, as it confusesDLC and results in
some non-intuitive error messages. You will still be able touseprintf in your bits.c file for
debugging without including the<stdio.h> header, althoughGCC will print a warning that you
can ignore.

• The DLC program enforces a stricter form of declarations than is thecase for C++ or Java or even
that is enforced byGCC. In particular, any declaration must appear in a block (whatyou enclose in
curly braces) before any statement that is not a declaration. For example, it will complain about the
following code:

int foo(int x)
{

int a = x;
a * = 3; / * Statement that is not a declaration * /
int b = a; / * ERROR: Declaration not allowed here * /

}

The BDD checker cannot handle functions that call other functions, includingprintf . You should use
BTEST to evaluate code with debuggingprintf statements. Be sure to remove any of these debugging
statements before you hand in.

Check the fileREADMEfor documentation on running theBTEST program. You’ll find it helpful to work
through the functions one at a time, testing each one as you go. You can use the-f flag to instructBTEST

to test only a single function, e.g.,./btest -f bitAnd . You can feed it specific function arguments
using the option flags-1 , -2 , and-3 . Also, the-g option is a nice way to get a compact summary of the
correctness of each function.

The testing provided byBTEST is especially weak for the floating-point problems, where there are tricky
issues of denormalized numbers, rounding, and overflow. Usethe BDD checker to detect problems in your
code, but then useBTEST andFSHOW(or ISHOW for integer problems) to help you better understand what’s
going on.

6 Hand In Instructions

Unlike other courses you may have taken in the past, in this course you may handin your work as often as
you like until the due date of the lab. There are two types of handins:unofficialandofficial handins.

• Unofficial handins. As you work on the assignment you can use the driver programdriver.pl to
stream your current results to the Autolab server to be displayed on the class status Web page. The
driver is the same program our autograder calls when it grades your handin. If your userid isbovik ,
then typing

unix> ./driver.pl -u bovik

7

will stream your results (in the form of an ASCII text line we call anautoresult string) to the Autolab
server. The autoresult strings are logged, and the last autoresults from each student are periodically
summarized on the class status Web page, under each student’s Autolab nickname.

The Autolab page provides options that allow you to view the class status page (“View class status
page”) as well as the complete history of your autoresult submissions (“View your autoresult history”).

• Official handins. The autoresult strings sent from your copy of the driver program are unofficial and
just for fun. To receive credit, you will need to upload yourbits.c file using the Autolab option
“Handin your work for credit”. Each time you handin your code, the server will run the autograder on
your handin file and produce a grade report (it also logs an official autoresult string for the class status
page). The server archives each of your submissions and resulting grade reports, which you can view
anytime using the “View your handin history and scores” option.

Notes:

• At any point in time, your most recently uploaded file is your official handin. You may handin as
often as you like.

• Each time you handin, you should use the “View your handin history and scores” option to confirm
that your handin was properly autograded.

• You must remove any extraneous print statements from yourbits.c file before handing in.

8

