15-213

“The course that gives CMU its Zip!”

Dynamic Memory Allocation Il
April 1, 2004

Topics
m Explicit doubly-linked free lists
m Segregated free lists
m Garbage collection
m Memory-related perils and pitfalls

cl ass22. ppt

Keeping Track of Free Blocks

® Method 1: Implicit list using lengths -- links all blocks

5 4 6 2

® Method 2: Explicit list among the free blocks using
pointers within the free blocks

—
(s [T e] [[| [[20T

® Method 3: Segregated free lists
m Different free lists for different size classes

® Method 4: Blocks sorted by size (not discussed)

m Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

o 15-213, S04

Explicit Free Lists

A [Pl e P ¢ [

Use data space for link pointers
m Typically doubly linked
m Still need boundary tags for coalescing

Forward links

Back links

m [t is important to realize that links are not necessarily in the
same order as the blocks

3 15-213, S04

Allocating From Explicit Free Lists

pred succ
Before: free block
pred succ
After:
(with splitting) free block
—4- 15-213, S'04

Freeing With Explicit Free Lists

Insertion policy: Where in the free list do you put a
newly freed block?

m LIFO (last-in-first-out) policy
e Insert freed block at the beginning of the free list
® Pro: simple and constant time
e Con: studies suggest fragmentation is worse than address

ordered.
m Address-ordered policy

e Insert freed blocks so that free list blocks are always in address
order

» i.e. addr(pred) < addr(curr) < addr(succ)
e Con: requires search
® Pro: studies suggest fragmentation is better than LIFO

5 15-213, S04

Freeing With a LIFO Policy

Case 1: a-a-a
m Insert self at beginning of

free list a self a
L 1
r==================== 1
| iR
1
Case 2: a-a-f before: | t t :
m Splice out next, coalesce ! a self f :
self and next, and add to e !
beginning of free list mmmmmm e :
! <+—»s
after: | P :
1 a f 1
1
L e e e e e e = 1
6 15-213, S'04

Freeing With a LIFO Policy

Case 1: a-a-a
m Insert self at beginning of

free list
[mmmmmmm e
1 p S
1

Case 2: a-a-f before: | ! ¢
m Splice out next, coalesce : a self f

self and next, and add to L

beginning of free list mmmmmm e -
! <+—>»s

after: | P

: a f

- 15-213, S04

Freeing With a LIFO Policy (cont)

o PS
before: : t t
Case 3: f-a-a ! f self a
m Splice out prev, coalesce === - -
- |m=mmmmmmmmmmmmmmm——
with self, and add to | pe—>s
beginning of free list after: !
: f a
e e g e e e e e
1 pl sl p2 s2
before:: ¢ t t ¢
. 1
Case 4: f-a-f i f self ¢
m Splice out prev and next, Lt _
coalesce with self, and R et 1
add to beginning of list 1ple>si p2 €«»s2
after: |
1 f
I e S
g 15-213, S'04

Explicit List Summary

Comparison to implicit list:

m Allocate is linear time in number of free blocks instead of
total blocks -- much faster allocates when most of the
memory is full

m Slightly more complicated allocate and free since needs to
splice blocks in and out of the list

m Some extra space for the links (2 extra words needed for
each block) Does this increase internal frag?

Main use of linked lists is in conjunction with
segregated free lists

m Keep multiple linked lists of different size classes, or
possibly for different types of objects

_o- 15-213, S04

Keeping Track of Free Blocks

Method 1: Implicit list using lengths -- links all blocks

5 4 6 2

Method 2: Explicit list among the free blocks using
pointers within the free blocks

—
[s[71 | BEEEE s [[[| =

Method 3: Segregated free list
m Different free lists for different size classes

Method 4: Blocks sorted by size

m Can use a balanced tree (e.g. Red-Black tree) with pointers within
each free block, and the length used as a key

~10- 15-213, S'04

Segregated Storage

Each size class has its own collection of blocks

afl I TPl T-
se | [[[T TP IIITII]F
o [| [TTPTITTIITII]] M

m Often have separate size class for every small size (2,3,4,...)
m For larger sizes typically have a size class for each power of 2

—11 - 15-213, S'04

Simple Segregated Storage

Separate heap and free list for each size class
No splitting

To allocate a block of size n:

m If free list for size n is not empty,
e allocate first block on list (note, list can be implicit or explicit)

m If free list is empty,
® get anew page
e create new free list from all blocks in page
® allocate first block on list

m Constant time

To free a block:
m Add to free list
m If page is empty, return the page for use by another size (optional)

Tradeoffs:

m Fast, but can fragment badly
-12- 15-213, S'04

Segregated Fits

Array of free lists, each one for some size class

To allocate a block of size n:

m Search appropriate free list for block of size m >n
m |f an appropriate block is found:
e Split block and place fragment on appropriate list (optional)
m If no block is found, try next larger class
m Repeat until block is found

To free a block:
m Coalesce and place on appropriate list (optional)

Tradeoffs

m Faster search than sequential fits (i.e., log time for power of
two size classes)

m Controls fragmentation of simple segregated storage
m Coalescing can increase search times
® Deferred coalescing can help

—13-— 15-213, S'04

For More Info on Allocators

D. Knuth, “The Art of Computer Programming, Second
Edition”, Addison Wesley, 1973

m The classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.

m Comprehensive survey

m Available from CS:APP student site (csapp.cs.cmu.edu)

-14 - 15-213, S'04

Implicit Memory Management:
Garbage Collection

Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free

voi d foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

Common in functional languages, scripting languages,
and modern object oriented languages:

m Lisp, ML, Java, Perl, Mathematica,

Variants (conservative garbage collectors) exist for C
and C++

m However, cannot necessarily collect all garbage

— 15— 15-213, S'04

Garbage Collection

How does the memory manager know when memory
can be freed?

m In general we cannot know what is going to be used in the
future since it depends on conditionals

m But we can tell that certain blocks cannot be used if there
are no pointers to them

Need to make certain assumptions about pointers

= Memory manager can distinguish pointers from non-
pointers

m All pointers point to the start of a block

m Cannot hide pointers (e.g., by coercing them to an i nt, and
then back again)

~16 - 15-213, S'04

Classical GC algorithms

Mark and sweep collection (McCarthy, 1960)
m Does not move blocks (unless you also “compact”)

Reference counting (Collins, 1960)
m Does not move blocks (not discussed)

Copying collection (Minsky, 1963)
m Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
m Collects based on lifetimes

For more information, see Jones and Lin, “Garbage
Collection: Algorithms for Automatic Dynamic
Memory”, John Wiley & Sons, 1996.

_17 - 15-213, S'04

Memory as a Graph

We view memory as a directed graph
m Each block is a node in the graph
m Each pointer is an edge in the graph

m Locations not in the heap that contain pointers into the heap are
called root nodes (e.g.registers, locations on the stack, global
variables)

Root nodes P ﬁ) C{

Heap nodes O reachable

Not-reachable

P O O (garbage)
o’y

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (never needed by the application)

~18 - 15-213, S'04

Assumptions For This Lecture

Application
m new(n) : returns pointer to new block with all locations cleared
mread(b,i): readlocationi of block b into register
mwite(b,i,v): writevintolocationi of block b

Each block will have a header word
m addressed as b[- 1], for a block b
m Used for different purposes in different collectors

Instructions used by the Garbage Collector

mis _ptr(p): determines whether p is a pointer

m | engt h(b): returns the length of block b, not including the header
m get _roots(): returns all the roots

—19-— 15-213, S'04

Mark and Sweep Collecting

Can build on top of malloc/free package
m Allocate using malloc until you “run out of space”

When out of space:
m Use extra mark bit in the head of each block
m Mark: Start at roots and sets mark bit on all reachable memory
m Sweep: Scan all blocks and free blocks that are not marked

root I:l Mark bit set

Before mark I | ® | ./I/—\T
After mark | L./\S | ./I/—\T
After sweep I | | free |]/’ m

—20- 15-213, S'04

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark(ptr p) {
if (lis_ptr(p)) return; /1 do nothing if not pointer

if (markBitSet(p)) return; /'l check if already narked
set MarkBi t (p); /1 set the mark bit
for (i=0; i < length(p); i++) // mark all children

mark(p[i]);
return;

}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) {
if markBit Set (p)
clearMarkBit();
else if (allocateBitSet(p))
free(p);
p += length(p);

21— 15-213, S'04

Conservative Mark and Sweep in C

A conservative collector for C programs

mis _ptr() determines if aword is a pointer by checking if it
points to an allocated block of memory.

m But, in C pointers can point to the middle of a block.

ptr
header

v
L] [| [[]

So how do we find the beginning of the block?

m Can use balanced tree to keep track of all allocated blocks
where the key is the location

m Balanced tree pointers can be stored in header (use two
additional words) head data

s, |\] |

left right
22— 15-213, S'04

Generational Collectors

Idea: exploit the fact that many memory objects are short-lived and
“older” memory objects are likely to live longer.

How?
m Partition Heap logically into multiple generations (for example 2-8)
m GC youngest generation more frequently

m Promote objects in generation x to generation x+1 once they
survived a certain number of GC cycles

Implementation issues:
m To copy or not-to-copy (compaction)

m How to tell which generation an object belongs to?
e Partition the Heap address space vs. record it in header
m Pointer from older to younger generations
e Write-barrier: at start of generation begin recording write to objects in
older generation
e Use a card-table to locate modified old memory objects

_23- 15-213, S'04

Memory-Related Bugs

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

— 24— 15-213, S'04

Dereferencing Bad Pointers

The classic scanf bug

‘ scanf (“%”, val); ‘

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

/* returny = Ax */

int *matvec(int **A int *x) {
int *y = malloc(N+sizeof (int));
int i, j;

for (i=0; i<N, i++)
for (j=0; j<N, j++)
y[i]l += ALiT[j1*x[i];

return vy;
}
Overwriting Memory Overwriting Memory
Allocating the (possibly) wrong sized object Off-by-one error
int **p; int **p;
p = mall oc(Ntsizeof (int)): p = malloc(Nsizeof (int *));
o for (i=0; i<=N, i++) {
for (i=0; i<N i++) { S . .]
pli] = malloc(Msizeof (int)); ; L] =) e b el 2 (1))
}

Overwriting Memory

Not checking the max string size

char s[8];
int i;

gets(s); /* reads “123456789” fromstdin */

Basis for classic buffer overflow attacks
m 1988 Internet worm
m Modern attacks on Web servers
m AOL/Microsoft IM war

15-213, S'04

Overwriting Memory

Referencing a pointer instead of the object it points to

i nt *Bi nheapDel ete(int **binheap, int *size) {
i nt *packet;
packet = bi nheap[0];
bi nheap[0] = bi nheap[*si ze - 1];
*si ze--;
Heapi f y(bi nheap, *size, 0);
return(packet);

~30- 15-213, S'04

Overwriting Memory

Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p & & *p !'= val)
p += sizeof(int);

return p;

—31-

15-213, S'04

Referencing Nonexistent Variables

Forgetting that local variables disappear when a
function returns

int *foo () {
int val;

return &val ;

3o 15-213, S'04

Freeing Blocks Multiple Times

Nasty!
x = mal |l oc(N*sizeof (int));
<manipulate x>
free(x);
y = mall oc(Msizeof(int));
<manipulate y>
free(x);
-33- 15-213, S'04

Referencing Freed Blocks

Evil!

x = mal |l oc(Ntsizeof (int));
<manipulate x>
free(x);

y ;.nalloc(l\/rsizeof(int));
for (i=0; i<M i++)
yli]l = x[i]++

34— 15-213, S'04

Failing to Free Blocks
(Memory Leaks)

Slow, long-term killer!

foo() {
int *x = mall oc(N*si zeof (int));
é.e.turn;
}
-35- 15-213, S'04

Failing to Free Blocks
(Memory Leaks)

Freeing only part of a data structure

struct list {
int val;
struct list *next;

b
foo() {

struct list *head = nall oc(sizeof(struct list));
head- >val = 0;

head- >next = NULL;

<create and manipulate the rest of the list>

f'r.ee(head);
return;

_36- 15-213, S'04

Dealing With Memory Bugs

Conventional debugger (gdb)
m Good for finding bad pointer dereferences
m Hard to detect the other memory bugs

Debugging mal | oc (CSRI UToronto mal | oc)

m Wrapper around conventional mal | oc

m Detects memory bugs at mal | oc and free boundaries
® Memory overwrites that corrupt heap structures
® Some instances of freeing blocks multiple times
® Memory leaks

m Cannot detect all memory bugs
® Overwrites into the middle of allocated blocks
® Freeing block twice that has been reallocated in the interim
e Referencing freed blocks

_37- 15-213, S'04

Dealing With Memory Bugs (cont.)

Binary translator (Atom, Purify, valgrind [Linux])
m Powerful debugging and analysis technique
m Rewrites text section of executable object file
m Can detect all errors as debugging mal | oc
m Can also check each individual reference at runtime
® Bad pointers
® Overwriting
o Referencing outside of allocated block
Garbage collection (Boehm-Weiser Conservative GC)
m Let the system free blocks instead of the programmer.

—38- 15-213, S'04

