
Dynamic Memory Allocation II
April 1, 2004

Topics
� Explicit doubly-linked free lists
� Segregated free lists
� Garbage collection
� Memory-related perils and pitfalls

cl ass22. ppt

15-213
“ The course that gives CMU its Zip!”

– 2 – 15-213, S’04

Keeping Track of Free Blocks
� Method 1: Implicit list using lengths -- links all blocks

� Method 2: Explicit list among the free blocks using
pointers within the free blocks

� Method 3: Segregated free lists
� Different free lists for different size classes

� Method 4: Blocks sorted by size (not discussed)
� Can use a balanced tree (e.g. Red-Black tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

– 3 – 15-213, S’04

Explicit Free Lists

Use data space for link pointers
� Typically doubly linked
� Still need boundary tags for coalescing

� It is important to realize that links are not necessarily in the
same order as the blocks

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C

– 4 – 15-213, S’04

Allocating From Explicit Free Lists

free block

pred succ

free block

pred succ

Before:

After:
(with splitting)

– 5 – 15-213, S’04

Freeing With Explicit Free Lists
Insertion policy: Where in the free list do you put a

newly freed block?
� LIFO (last-in-first-out) policy

� Insert freed block at the beginning of the free list
� Pro: simple and constant time
� Con: studies suggest fragmentation is worse than address

ordered.

� Address-ordered policy
� Insert freed blocks so that free list blocks are always in address

order
» i.e. addr(pred) < addr(curr) < addr(succ)

� Con: requires search
� Pro: studies suggest fragmentation is better than LIFO

– 6 – 15-213, S’04

Freeing With a LIFO Policy

Case 1: a-a-a
� Insert self at beginning of

free list

Case 2: a-a-f
� Splice out next, coalesce

self and next, and add to
beginning of free list

selfa a

p s

selfa f
before:

p s

fa
after:

root x

– 7 – 15-213, S’04

Freeing With a LIFO Policy

Case 1: a-a-a
� Insert self at beginning of

free list

Case 2: a-a-f
� Splice out next, coalesce

self and next, and add to
beginning of free list

selfa a

p s

selfa f
before:

p s

fa
after:

root x

– 8 – 15-213, S’04

Freeing With a LIFO Policy (cont)

Case 3: f-a-a
� Splice out prev, coalesce

with self, and add to
beginning of free list

Case 4: f-a-f
� Splice out prev and next,

coalesce with self, and
add to beginning of list

p s

selff a

before:

p s

f a
after:

p1 s1

selff f

before:

f
after:

p2 s2

p1 s1 p2 s2

– 9 – 15-213, S’04

Explicit List Summary
Comparison to implicit list:

� Allocate is linear time in number of free blocks instead of
total blocks -- much faster allocates when most of the
memory is full

� Slightly more complicated allocate and free since needs to
splice blocks in and out of the list

� Some extra space for the links (2 extra words needed for
each block)

Main use of linked lists is in conjunction with
segregated free lists
� Keep multiple linked lists of different size classes, or

possibly for different types of objects

Does this increase internal frag?

– 10 – 15-213, S’04

Keeping Track of Free Blocks

Method 1: Implicit list using lengths -- links all blocks

Method 2: Explicit list among the free blocks using
pointers within the free blocks

Method 3: Segregated free list
� Different free lists for different size classes

Method 4: Blocks sorted by size
� Can use a balanced tree (e.g. Red-Black tree) with pointers within

each free block, and the length used as a key

5 4 26

5 4 26

– 11 – 15-213, S’04

Segregated Storage
Each size class has its own collection of blocks

1-2

3

4

5-8

9-16

� Often have separate size class for every small size (2,3,4,…)

� For larger sizes typically have a size class for each power of 2

– 12 – 15-213, S’04

Simple Segregated Storage
Separate heap and free list for each size class

No splitting

To allocate a block of size n:
� If free list for size n is not empty,

� allocate first block on list (note, list can be implicit or explicit)

� If free list is empty,
� get a new page
� create new free list from all blocks in page
� allocate first block on list

� Constant time

To free a block:
� Add to free list

� If page is empty, return the page for use by another size (optional)

Tradeoffs:
� Fast, but can fragment badly

– 13 – 15-213, S’04

Segregated Fits
Array of free lists, each one for some size class

To allocate a block of size n:
� Search appropriate free list for block of size m > n
� If an appropriate block is found:

� Split block and place fragment on appropriate list (optional)

� If no block is found, try next larger class
� Repeat until block is found

To free a block:
� Coalesce and place on appropriate list (optional)

Tradeoffs
� Faster search than sequential fits (i.e., log time for power of

two size classes)
� Controls fragmentation of simple segregated storage
� Coalescing can increase search times

� Deferred coalescing can help

– 14 – 15-213, S’04

For More Info on Allocators

D. Knuth, “ The Art of Computer Programming, Second
Edition” , Addison Wesley, 1973
� The classic reference on dynamic storage allocation

Wilson et al, “ Dynamic Storage Allocation: A Survey
and Critical Review” , Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.
� Comprehensive survey
� Available from CS:APP student site (csapp.cs.cmu.edu)

– 15 – 15-213, S’04

Implicit Memory Management:
Garbage Collection

Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free

Common in functional languages, scripting languages,
and modern object oriented languages:
� Lisp, ML, Java, Perl, Mathematica,

Variants (conservative garbage collectors) exist for C
and C++
� However, cannot necessarily collect all garbage

voi d f oo() {
i nt * p = mal l oc(128) ;
r et ur n; / * p bl ock i s now gar bage * /

}

– 16 – 15-213, S’04

Garbage Collection
How does the memory manager know when memory

can be freed?
� In general we cannot know what is going to be used in the

future since it depends on conditionals
� But we can tell that certain blocks cannot be used if there

are no pointers to them

Need to make certain assumptions about pointers
� Memory manager can distinguish pointers from non-

pointers
� All pointers point to the start of a block
� Cannot hide pointers (e.g., by coercing them to an i nt , and

then back again)

– 17 – 15-213, S’04

Classical GC algorithms
Mark and sweep collection (McCarthy, 1960)

� Does not move blocks (unless you also “ compact”)

Reference counting (Collins, 1960)
� Does not move blocks (not discussed)

Copying collection (Minsky, 1963)
� Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
� Collects based on lifetimes

For more information, see Jones and Lin, “ Garbage
Collection: Algorithms for Automatic Dynamic
Memory” , John Wiley & Sons, 1996.

– 18 – 15-213, S’04

Memory as a Graph
We view memory as a directed graph

� Each block is a node in the graph
� Each pointer is an edge in the graph
� Locations not in the heap that contain pointers into the heap are

called root nodes (e.g. registers, locations on the stack, global
variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (never needed by the application)

– 19 – 15-213, S’04

Assumptions For This Lecture
Application
� new(n) : returns pointer to new block with all locations cleared

� r ead(b, i) : read location i of block b into register

� wr i t e(b, i , v) : write v into location i of block b

Each block will have a header word
� addressed as b[- 1] , for a block b

� Used for different purposes in different collectors

Instructions used by the Garbage Collector
� i s_pt r (p) : determines whether p is a pointer

� l engt h(b): returns the length of block b, not including the header

� get _r oot s() : returns all the roots

– 20 – 15-213, S’04

Mark and Sweep Collecting
Can build on top of malloc/free package

� Allocate using malloc until you “run out of space”

When out of space:
� Use extra mark bit in the head of each block

� Mark: Start at roots and sets mark bit on all reachable memory

� Sweep: Scan all blocks and free blocks that are not marked

Before mark

root

After mark

After sweep free

Mark bit set

free

– 21 – 15-213, S’04

Mark and Sweep (cont.)

pt r mar k(pt r p) {
i f (! i s_pt r (p)) r et ur n; / / do not hi ng i f not poi nt er
i f (mar kBi t Set (p)) r et ur n; / / check i f al r eady mar ked
set Mar kBi t (p) ; / / set t he mar k bi t
f or (i =0; i < l engt h(p) ; i ++) / / mar k al l chi l dr en

mar k(p[i]) ;
r et ur n;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
pt r sweep(pt r p, pt r end) {

whi l e (p < end) {
i f mar kBi t Set (p)

cl ear Mar kBi t () ;
el se i f (al l ocat eBi t Set (p))

f r ee(p) ;
p += l engt h(p) ;

}
– 22 – 15-213, S’04

Conservative Mark and Sweep in C
A conservative collector for C programs

� i s_pt r () determines if a word is a pointer by checking if it
points to an allocated block of memory.

� But, in C pointers can point to the middle of a block.

So how do we find the beginning of the block?
� Can use balanced tree to keep track of all allocated blocks

where the key is the location

� Balanced tree pointers can be stored in header (use two
additional words)

header

ptr

head data

left right

size

– 23 – 15-213, S’04

Generational Collectors
Idea: exploit the fact that many memory objects are short-lived and

“ older” memory objects are likely to live longer.

How?
� Partition Heap logically into multiple generations (for example 2-8)

� GC youngest generation more frequently

� Promote objects in generation x to generation x+1 once they
survived a certain number of GC cycles

Implementation issues:
� To copy or not-to-copy (compaction)

� How to tell which generation an object belongs to?
� Partition the Heap address space vs. record it in header

� Pointer from older to younger generations
� Write-barrier: at start of generation begin recording write to objects in

older generation
� Use a card-table to locate modified old memory objects

– 24 – 15-213, S’04

Memory-Related Bugs
Dereferencing bad pointers

Reading uninitialized memory

Overwriting memory

Referencing nonexistent variables

Freeing blocks multiple times

Referencing freed blocks

Failing to free blocks

– 25 – 15-213, S’04

Dereferencing Bad Pointers

The classic scanf bug

scanf (“ %d” , val) ;

– 26 – 15-213, S’04

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

/ * r et ur n y = Ax * /
i nt * mat vec(i nt * * A, i nt * x) {

i nt * y = mal l oc(N* si zeof (i nt)) ;
i nt i , j ;

f or (i =0; i <N; i ++)
f or (j =0; j <N; j ++)

y[i] += A[i] [j] * x[j] ;
r et ur n y;

}

– 27 – 15-213, S’04

Overwriting Memory

Allocating the (possibly) wrong sized object

i nt * * p;

p = mal l oc(N* si zeof (i nt)) ;

f or (i =0; i <N; i ++) {
p[i] = mal l oc(M* si zeof (i nt)) ;

}

– 28 – 15-213, S’04

Overwriting Memory

Off-by-one error

i nt * * p;

p = mal l oc(N* si zeof (i nt *)) ;

f or (i =0; i <=N; i ++) {
p[i] = mal l oc(M* si zeof (i nt)) ;

}

– 29 – 15-213, S’04

Overwriting Memory

Not checking the max string size

Basis for classic buffer overflow attacks
� 1988 Internet worm
� Modern attacks on Web servers
� AOL/Microsoft IM war

char s[8] ;
i nt i ;

get s(s) ; / * r eads “ 123456789” f r om st di n * /

– 30 – 15-213, S’04

Overwriting Memory

Referencing a pointer instead of the object it points to

i nt * Bi nheapDel et e(i nt * * bi nheap, i nt * s i ze) {
i nt * packet ;
packet = bi nheap[0] ;
bi nheap[0] = bi nheap[* si ze - 1] ;
* s i ze- - ;
Heapi f y(bi nheap, * s i ze, 0) ;
r et ur n(packet) ;

}

– 31 – 15-213, S’04

Overwriting Memory

Misunderstanding pointer arithmetic

i nt * sear ch(i nt * p, i nt val) {

whi l e (* p && * p ! = val)
p += si zeof (i nt) ;

r et ur n p;
}

– 32 – 15-213, S’04

Referencing Nonexistent Variables

Forgetting that local variables disappear when a
function returns

i nt * f oo () {
i nt val ;

r et ur n &val ;
}

– 33 – 15-213, S’04

Freeing Blocks Multiple Times

Nasty!

x = mal l oc(N* si zeof (i nt)) ;
���������	
��

f r ee(x) ;

y = mal l oc(M* si zeof (i nt)) ;
���������	
��

f r ee(x) ;

– 34 – 15-213, S’04

Referencing Freed Blocks

Evil!

x = mal l oc(N* si zeof (i nt)) ;
���������	
��

f r ee(x) ;
���

y = mal l oc(M* si zeof (i nt)) ;
f or (i =0; i <M; i ++)

y[i] = x[i] ++;

– 35 – 15-213, S’04

Failing to Free Blocks
(Memory Leaks)
Slow, long-term killer!

f oo() {
i nt * x = mal l oc(N* si zeof (i nt)) ;
���
r et ur n;

}

– 36 – 15-213, S’04

Failing to Free Blocks
(Memory Leaks)
Freeing only part of a data structure

st r uct l i s t {
i nt val ;
st r uct l i s t * next ;

} ;

f oo() {
st r uct l i s t * head = mal l oc(si zeof (st r uct l i s t)) ;
head- >val = 0;
head- >next = NULL;
���
�	
�������������	
�	�
��
�	����	�
����	

���
f r ee(head) ;
r et ur n;

}

– 37 – 15-213, S’04

Dealing With Memory Bugs
Conventional debugger (gdb)

� Good for finding bad pointer dereferences
� Hard to detect the other memory bugs

Debugging mal l oc (CSRI UToronto mal l oc)
� Wrapper around conventional mal l oc

� Detects memory bugs at mal l oc and f r ee boundaries
� Memory overwrites that corrupt heap structures
� Some instances of freeing blocks multiple times
� Memory leaks

� Cannot detect all memory bugs
� Overwrites into the middle of allocated blocks
� Freeing block twice that has been reallocated in the interim
� Referencing freed blocks

– 38 – 15-213, S’04

Dealing With Memory Bugs (cont.)

Binary translator (Atom, Purify, valgrind [Linux])
� Powerful debugging and analysis technique

� Rewrites text section of executable object file
� Can detect all errors as debugging mal l oc

� Can also check each individual reference at runtime
� Bad pointers
� Overwriting
� Referencing outside of allocated block

Garbage collection (Boehm-Weiser Conservative GC)
� Let the system free blocks instead of the programmer.

