
Page 1

Floating Point
Jan 22, 2004

Topics
� IEEE Floating Point Standard
� Rounding
� Floating Point Operations
� Mathematical properties

class04.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, S’04

Floating Point Puzzles
� For each of the following C expressions, either:

� Argue that it is true for all argument values
� Explain why not true

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ���� ((d*2) < 0.0)

• d > f ���� -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

– 3 – 15-213, S’04

IEEE Floating Point

IEEE Standard 754
� Established in 1985 as uniform standard for floatin g point

arithmetic
� Before that, many idiosyncratic formats

� Supported by all major CPUs

Driven by Numerical Concerns
� Nice standards for rounding, overflow, underflow

� Hard to make go fast
� Numerical analysts predominated over hardware types in

defining standard

– 4 – 15-213, S’04

Fractional Binary Numbers

Representation
� Bits to right of “binary point” represent fractional powers of 2

� Represents rational number:

1
2
4

2i–1

2i

bi bi–1 b2 b1 b0 b–1 b–2 b–3
b–j• • •• • • .

• • •

•• •

1/2
1/4
1/8

2–j

bk ⋅2k

k=− j

i

�

Page 2

– 5 – 15-213, S’04

Frac. Binary Number Examples
Value Representation

5-3/4 101.11 2

2-7/8 10.111 2

63/64 0.111111 2

Observations
�Divide by 2 by shifting right
�Multiply by 2 by shifting left
�Numbers of form 0.111111… 2 just below 1.0

�1/2 + 1/4 + 1/8 + … + 1/2i + … →→→→ 1.0
�Use notation 1.0 – εεεε

– 6 – 15-213, S’04

Representable Numbers
Limitation

� Can only exactly represent numbers of the form x/2k

� Other numbers have repeating bit representations

Value Representation
1/3 0.0101010101[01]… 2

1/5 0.001100110011[0011]… 2

1/10 0.0001100110011[0011]… 2

– 7 – 15-213, S’04

Numerical Form
�–1s M 2E

�Sign bit s determines whether number is negative or
positive

�Significand M normally a fractional value in range [1.0,2.0).
�Exponent E weights value by power of two

Encoding

�MSB is sign bit
�exp field encodes E
� frac field encodes M

Floating Point Representation

s exp frac

– 8 – 15-213, S’04

Encoding

� MSB is sign bit
� exp field encodes E
� frac field encodes M

Sizes
� Single precision: 8 exp bits, 23 frac bits (32 bits)
� Double precision: 11 exp bits, 52 frac bits (64 bits)
� Extended precision: 15 exp bits, 63 frac bits (80 bits)

�Only found in Intel-compatible machines
�Stored in 80 bits

»1 bit wasted

Floating Point Precisions

s exp frac

Page 3

– 9 – 15-213, S’04

FP comes in three flavors

Normalized: When exp isn’t all 0s or 1s
� Larges range

� Mantissa has implied leading “1.”

Denormalized: When exp is all 0s
� evenly spaced close to 0

Special: When exp is all 1s
� infinities

� Not a numbers

– 10 – 15-213, S’04

“Normalized” Numeric Values
Condition

� exp ≠≠≠≠ 000…0 and exp ≠≠≠≠ 111…1

Exponent coded as biased value
E = Exp – Bias

�Exp : unsigned value denoted by exp

�Bias : Bias value
»Single precision: 127 (Exp : 1…254 →→→→ E: -126…127)
»Double precision: 1023 (Exp : 1…2046 →→→→ E: -1022…1023)
» in general: Bias = 2e-1 - 1, where e is number of exponent bits

Significand coded with implied leading 1
M = 1.xxx …x2

� xxx…x: bits of frac
�Minimum when 000…0 (M = 1.0)
�Maximum when 111…1 (M = 2.0 – εεεε)
�Get extra leading bit for “free”

– 11 – 15-213, S’04

Normalized Encoding Example
Value

Float F = 15213.0;

� 1521310 = 111011011011012 = 1.11011011011012 * 213

Significand
M = 1.11011011011012

frac = 1101101101101 0000000000 2

Exponent
E = 13
Bias = 127
Exp = 140 = 10001100 2

Floating Point Representation (Class 02):

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

140: 100 0110 0

15213: 1110 1101 1011 01

– 12 – 15-213, S’04

Denormalized Values
Condition

� exp = 000…0

Value
� Exponent value E = –Bias + 1
� Significand value M = 0.xxx …x2

� xxx …x : bits of frac

Cases
� exp = 000…0, frac = 000…0

� Represents value 0
� Note that have distinct values +0 and –0

� exp = 000…0, frac ≠≠≠≠ 000…0
� Numbers very close to 0.0
� Lose precision as get smaller
� “Gradual underflow”

Page 4

– 13 – 15-213, S’04

Special Values

Condition
� exp = 111…1

Cases
� exp = 111…1, frac = 000…0

� Represents value ∞ ∞ ∞ ∞ (infinity)
� Operation that overflows
� Both positive and negative

� E.g., 1.0/0.0 = −−−−1.0/−−−−0.0 = +∞∞∞∞, 1.0/−−−−0.0 = −−−−∞∞∞∞
�exp = 111…1, frac ≠≠≠≠ 000…0

� Not-a-Number (NaN)
� Represents case when no numeric value can be determ ined
� E.g., sqrt(–1), ∞ − ∞∞ − ∞∞ − ∞∞ − ∞

– 14 – 15-213, S’04

Summary of Floating Point
Real Number Encodings

NaNNaN

+∞−∞

−0

+Denorm +Normalized-Denorm-Normalized

+0

– 15 – 15-213, S’04

Tiny Floating Point Example

8-bit Floating Point Representation
� the sign bit is in the most significant bit.
� the next four bits are the exponent, with a bias of 7.
� the last three bits are the frac

Same General Form as IEEE Format
� normalized, denormalized

� representation of 0, NaN, infinity

s exp frac
02367

– 16 – 15-213, S’04

Values Related to the Exponent
Exp exp E 2 E

0 0000 -6 1/64 (denorms)
1 0001 -6 1/64
2 0010 -5 1/32
3 0011 -4 1/16
4 0100 -3 1/8
5 0101 -2 1/4
6 0110 -1 1/2
7 0111 0 1
8 1000 +1 2
9 1001 +2 4
10 1010 +3 8
11 1011 +4 16
12 1100 +5 32
13 1101 +6 64
14 1110 +7 128
15 1111 n/a (inf, NaN)

Page 5

– 17 – 15-213, S’04

Dynamic Range
s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

– 18 – 15-213, S’04

Distribution of Values

6-bit IEEE-like format
� e = 3 exponent bits
� f = 2 fraction bits

� Bias is 3

Notice: the distribution gets denser towards 0.

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

– 19 – 15-213, S’04

Distribution of Values (close-up view)

6-bit IEEE-like format
� e = 3 exponent bits

� f = 2 fraction bits
� Bias is 3

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

– 20 – 15-213, S’04

Interesting Numbers

Description exp frac Numeric Value

Zero 00…00 00…00 0.0

Smallest Pos. Denorm. 00…00 00…01 2– {23,52} X 2– {126,1022}

� Single ≈≈≈≈ 1.4 X 10–45

� Double ≈ 4.9 X 10–324

Largest Denormalized 00…00 11…11 (1.0 – ε) X 2– {126,1022}

� Single ≈≈≈≈ 1.18 X 10–38

� Double ≈ 2.2 X 10–308

Smallest Pos. Normalized 00…01 00…00 1.0 X 2– {126,1022}

� Just larger than largest denormalized

One 01…11 00…00 1.0

Largest Normalized 11…10 11…11 (2.0 – ε) X 2{127,1023}

� Single ≈≈≈≈ 3.4 X 1038

� Double ≈ 1.8 X 10308

Page 6

– 21 – 15-213, S’04

Special Properties of Encoding

FP Zero Same as Integer Zero
� All bits = 0

Can (Almost) Use Unsigned Integer Comparison
� Must first compare sign bits

� Must consider -0 = 0

� NaNs problematic
� Will be greater than any other values
� What should comparison yield?

� Otherwise OK
� Denorm vs. normalized
� Normalized vs. infinity

– 22 – 15-213, S’04

Floating Point Operations

Conceptual View
� First compute exact result

� Make it fit into desired precision
�Possibly overflow if exponent too large
�Possibly round to fit into frac

Rounding Modes (illustrate with $ rounding)
$1.40 $1.60 $1.50 $2.50 –$1.50

� Zero $1 $1 $1 $2 –$1

� Round down (-∞) $1 $1 $1 $2 –$2

� Round up (+∞) $2 $2 $2 $3 –$1

� Nearest Even (default) $1 $2 $2 $2 –$2

Note:
1. Round down: rounded result is close to but no g reater than true result.
2. Round up: rounded result is close to but no les s than true result.

– 23 – 15-213, S’04

Closer Look at Round-To-Even

Default Rounding Mode
� Hard to get any other kind without dropping into as sembly

� All others are statistically biased
�Sum of set of positive numbers will consistently be over- or under-

estimated

Applying to Other Decimal Places / Bit Positions
� When exactly halfway between two possible values

�Round so that least significant digit is even

� E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)

– 24 – 15-213, S’04

Rounding Binary Numbers

Binary Fractional Numbers
� “Even” when least significant bit is 0

� Half way when bits to right of rounding position = 100…2

Examples
� Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value
2 3/32 10.00011 2 10.00 2 (<1/2—down) 2

2 3/16 10.00110 2 10.01 2 (>1/2—up) 2 1/4

2 7/8 10.11100 2 11.00 2 (1/2—up) 3

2 5/8 10.10100 2 10.10 2 (1/2—down) 2 1/2

Page 7

– 25 – 15-213, S’04

FP Multiplication
Operands

(–1)s1 M1 2E1 * (–1)s2 M2 2E2

Exact Result
(–1)s M 2E

� Sign s: s1 ^ s2

� Significand M: M1 * M2

� Exponent E: E1 + E2

Fixing
� If M � 2, shift M right, increment E

� If E out of range, overflow
� Round M to fit frac precision

Implementation
� Biggest chore is multiplying significands

– 26 – 15-213, S’04

FP Addition
Operands

(–1)s1 M1 2E1

(–1)s2 M2 2E2

� Assume E1 > E2

Exact Result
(–1)s M 2E

� Sign s, significand M:
� Result of signed align & add

� Exponent E: E1

Fixing
� If M � 2, shift M right, increment E

� if M < 1, shift M left k positions, decrement E by k

� Overflow if E out of range
� Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

– 27 – 15-213, S’04

Mathematical Properties of FP Add

Compare to those of Abelian Group
�Closed under addition? YES

�But may generate infinity or NaN

�Commutative? YES

�Associative? NO
�Overflow and inexactness of rounding

�0 is additive identity? YES

�Every element has additive inverse ALMOST
�Except for infinities & NaNs

Monotonicity
�a � b � a+c � b+c? ALMOST

�Except for infinities & NaNs
– 28 – 15-213, S’04

Math. Properties of FP Mult

Compare to Commutative Ring
�Closed under multiplication? YES

�But may generate infinity or NaN

�Multiplication Commutative? YES

�Multiplication is Associative? NO
�Possibility of overflow, inexactness of rounding

�1 is multiplicative identity? YES

�Multiplication distributes over addition? NO
�Possibility of overflow, inexactness of rounding

Monotonicity
�a � b & c � 0 � a *c � b *c? ALMOST

�Except for infinities & NaNs

Page 8

– 29 – 15-213, S’04

Floating Point in C
C Guarantees Two Levels
float single precision

double double precision

Conversions
� Casting between int , float , & double changes numeric values

� Double or float to int

� Truncates fractional part
� Like rounding toward zero
� Not defined when out of range

» Generally saturates to TMin or TMax

� int to double
� Exact conversion, as long as int has � 53 bit word size

� int to float

� Will round according to rounding mode

– 30 – 15-213, S’04

Answers to Floating Point Puzzles

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ���� ((d*2) < 0.0)

• d > f ���� -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NAN

• x == (int)(float) x No: 24 bit significand

• x == (int)(double) x Yes: 53 bit significand

• f == (float)(double) f Yes: increases precision

• d == (float) d No: loses precision

• f == -(-f); Yes: Just change sign bit

• 2/3 == 2/3.0 No: 2/3 == 0

• d < 0.0 ���� ((d*2) < 0.0) Yes!

• d > f ���� -f > -d Yes!

• d * d >= 0.0 Yes!

• (d+f)-d == f No: Not associative

– 31 – 15-213, S’04

Ariane 5
� Exploded 37 seconds

after liftoff

� Cargo worth $500 million

Why
� Computed horizontal

velocity as floating point
number

� Converted to 16-bit
integer

� Worked OK for Ariane 4

� Overflowed for Ariane 5
� Used same software

– 32 – 15-213, S’04

Summary

IEEE Floating Point Has Clear Mathematical Propert ies

� Represents numbers of form M ×××× 2E

� Can reason about operations independent of
implementation
� As if computed with perfect precision and then roun ded

� Not the same as real arithmetic
� Violates associativity/distributivity
� Makes life difficult for

» compilers &
» serious numerical applications programmers

Page 9

– 33 – 15-213, S’04

Wait List

