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CS 15-213, Fall 2001

Exam 2
November 13, 2001

Instructions:

� Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID
on the front.

� Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

� The exam has a maximum score of 64 points.

� The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

� This exam is OPEN BOOK. You may use any books or notes you like. You may use a calculator, but
no laptops or other wireless devices. Good luck!
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The following two problems concern the performance of two procedures that generate a data structure
describing the population statistics for a set of data values. That is, suppose we had a set of integer data
values ������������	�	�	
��� , having minimum value ��
���� and maximum value ��
���� . For each possible value of �
between ��
���� and ��
���� , we want to record

���
, defined to be the number of values of � such that ������� .

We will record this information in a data structure of type pop_ele declared as follows:

typedef struct {
int m;
int xmin;
int *p;

} pop_ele, *pop_ptr;

Since C arrays have minimum index 0, and the value of � 
���� can be an arbitrary integer, we explicitly store
the value of ��
���� in this structure, and use an array p of size !"�#��
����%$&��
����('*) . Population value���

is then stored as array value p[x-xmin]. For example, for data set +,$-)��.)��
/0��$1)���$-)32 , we would have
� 
���� �*$-) , and !4�5/6$&$-)7'8)9�8: . The array p, would represent this population as follows:

Population values
�7; � ��< � � � �

Array Elements p[0] p[1] p[2] p[3]
Values = > ) )

Here is some utility code for finding the values of � 
���� and ��
��?� . We have instrumented the code with a
counter to determine the total number of comparisons peformed between data values (comp_cnt).

/* Find minimum value in array a */
int min_val(int a[], int n)
{

int i;
int result = a[0];
for (i = 1; i < n; i++) {

result = result > a[i] ? a[i] : result;
comp_cnt++;

}
return result;

}

/* Find maximum value in array a */
int max_val(int a[], int n)
{

int i;
int result = a[0];
for (i = 1; i < n; i++) {

result = result < a[i] ? a[i] : result;
comp_cnt++;

}
return result;

}
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Here are two versions of a function to generate population statistics. The first calls functions min_val and
max_val repeatedly.

/* First version of population counting routine */
pop_ptr build_pop1(int a[], int n)
{

int i;
pop_ptr result = (pop_ptr) malloc(sizeof(pop_ele));
result->xmin = min_val(a,n); // MIN1
result->m = (max_val(a, n) // MAX1

- min_val(a, n) + 1); // MIN2
result->p = (int *) malloc(result->m * sizeof(int));
/* Set population entries to zero */
for (i = min_val(a,n); // MIN3

i <= max_val(a,n); i++) // MAX2
result->p[i-min_val(a,n)] = 0; // MIN4

/* Now update the population entries */
for (i = 0; i < n; i++)

result->p[a[i]-min_val(a,n)]++; // MIN5
return result;

}

The second only calls each of these functions once, storing the result in a termporary.

pop_ptr build_pop2(int a[], int n)
{

int i;
pop_ptr result = (pop_ptr) malloc(sizeof(pop_ele));
int min = min_val(a,n); // MIN1
int max = max_val(a,n); // MAX1
result->xmin = min;
result->m = (max - min + 1);
result->p = (int *) malloc(result->m * sizeof(int));
/* Set population entries to zero */
for (i = min; i <= max; i++)

result->p[i-min] = 0;
/* Now update the population entries */
for (i = 0; i < n; i++)

result->p[a[i]-min]++;
return result;

}
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Problem 1. (13 points):
The comments on the right of the code for build_pop1 indicate the places where functions min_val
and max_val are called.
Suppose that ! is defined to be the number of entries in the population array. That is, !4��� 
���� $%� 
���� ' ) .
As before � denotes the size of the data set.

A. Fill in the following table to indicate the total number of calls to min_val and max_val made at
these different points in the program. Express your entries as formulas in terms of ! and � . The final
entry should show the total number of calls to min_val and max_val.

Call Point Times Called

MIN1

MAX1

MIN2

MIN3

MAX2

MIN4

MIN5

Total

B. The counter comp_cnt counts the total number of comparisons made between data values. How
many comparisons are made during a single call to min_val or max_val? Express your answer as
a formula in terms of ! and � .

C. If we start with comp_cnt equal to 0 and call function build_pop1, what will be the final value
of comp_cnt? Express your answer as a formula in terms of ! and � .
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Problem 2. (6 points):
Now let us compare the overall performance of build_pop1 to that of build_pop2, which avoids
repeated calls to min_val and max_val.
Consider the following scenarios for the relation between ! and � :

Dense: !4� �
� , i.e., there are many repeated values.

Matched: !4� � , i.e., the range of values is about the same as the number of values.

Sparse: !4� � � , i.e., the range is much larger than the number of values.

Fill in the following table giving the asymptotic complexities of the two functions. Your answers should be
formulas in big-O notation in terms of � , e.g., ��� ����� . Your answer will be marked incorrect if you do not
simplify the formula. For example, you should write ��� � � � instead of ��� / � � '&= � '8) � .
Your analysis should consider not just the effort expended in calling min_val and max_val, but all of
the operations performed by the two functions, as well.

Scenario build pop1 build pop2

Dense

Matched

Sparse
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Problem 3. (10 points):
Consider the following function for computing the product of an array of � integers. We have unrolled the
loop by a factor of 3.

int aprod(int a[], int n)
{

int i, x, y, z;
int r = 1;
for (i = 0; i < n-2; i+= 3) {

x = a[i]; y = a[i+1]; z = a[i+2];
r = r * x * y * z; // Product computation

}
for (; i < n; i++)

r *= a[i];
return r;

}

For the line labeled Product computation, we can use parentheses to create 5 different associations
of the computation, as follows:

r = ((r * x) * y) * z; // A1
r = (r * (x * y)) * z; // A2
r = r * ((x * y) * z); // A3
r = r * (x * (y * z)); // A4
r = (r * x) * (y * z); // A5

We express the performance of the function in terms of the number of cycles per element (CPE). As de-
scribed in the book, this measure assumes the run time, measured in clock cycles, for an array of length � is
a function of the form � � '�� , where � is the CPE.
We measured the 5 versions of the function on an Intel Pentium III. Recall from Figure 5.12 of the book that
the integer multiplication operation on this machine has a latency of 4 cycles and an issue time of 1 cycle.
The following table shows some values of the CPE, and other values missing. The measured CPE values
are those that were actually observed. “Theoretical CPE” means that performance that would be achieved if
the only limiting factor were the latency and issue time of the integer multiplier.

Version Measured CPE Theoretical CPE

A1 4.00

A2 2.67

A3

A4 1.67

A5

Fill in the missing entries. For the missing values of the measured CPE, you can use the values from other
versions that would have the same computational behavior. For the values of the theoretical CPE, you can
determine the number of cycles that would be required for an iteration considering only the latency and
issue time of the multiplier, and then divide by 3.
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Problem 4. (5 points):
The following problem concerns basic cache lookups.

� The memory is byte addressable.

� Memory accesses are to 1-byte words (not 4-byte words).

� Physical addresses are 12 bits wide.

� The cache is 4-way set associative, with a 2-byte block size and 32 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

4-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1

0 29 0 34 29 87 0 39 AE 7D 1 68 F2 8B 1 64 38
1 F3 1 0D 8F 3D 1 0C 3A 4A 1 A4 DB D9 1 A5 3C
2 A7 1 E2 04 AB 1 D2 04 E3 0 3C A4 01 0 EE 05
3 3B 0 AC 1F E0 0 B5 70 3B 1 66 95 37 1 49 F3
4 80 1 60 35 2B 0 19 57 49 1 8D 0E 00 0 70 AB
5 EA 1 B4 17 CC 1 67 DB 8A 0 DE AA 18 1 2C D3
6 1C 0 3F A4 01 0 3A C1 F0 0 20 13 7F 1 DF 05
7 0F 0 00 FF AF 1 B1 5F 99 0 AC 96 3A 1 22 79

Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that
would be used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

11 10 9 8 7 6 5 4 3 2 1 0
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Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex.
Indicate whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 3B6

A. Physical address format (one bit per box)
11 10 9 8 7 6 5 4 3 2 1 0

B. Physical memory reference

Parameter Value

Cache Offset (CO) 0x
Cache Index (CI) 0x
Cache Tag (CT) 0x
Cache Hit? (Y/N)
Cache Byte returned 0x
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Problem 5. (8 points):
A bitmap image is composed of pixels. Each pixel in the image is represented as four values: three for the
primary colors(red, green and blue - RGB) and one for the transparency information defined as an alpha
channel.

In this problem, you will compare the performance of direct mapped and : -way associative caches for a
square bitmap image initialization. Both caches have a size of )./�� bytes. The direct mapped cache has
� -byte blocks while the : -way associative cache has : -byte blocks.

You are given the following definitions

typedef struct{
unsigned char r;
unsigned char g;
unsigned char b;
unsigned char a;

}pixel_t;

pixel_t pixel[16][16];
register int i, j;

Also assume that

� sizeof(unsigned char) = 1

� pixel begins at memory address 0

� Both caches are initially empty

� The array is stored in row-major order

� Variables i,j are stored in registers and any access to these variables does not cause a cache miss

A. What fraction of the writes in the following code will result in a miss in the direct mapped cache?

for (i = 0; i < 16; i ++){
for (j = 0; j < 16; j ++){

pixel[i][j].r = 0;
pixel[i][j].g = 0;
pixel[i][j].b = 0;
pixel[i][j].a = 0;

}
}

Miss rate for writes to pixel:____________%
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B. Using code in part A, what fraction of the writes will result in a miss in the 4-way associative cache?

Miss rate for writes to pixel: ____________%

C. What fraction of the writes in the following code will result in a miss in the direct mapped cache?

for (i = 0; i < 16; i ++){
for (j = 0; j < 16; j ++){

pixel[j][i].r = 0;
pixel[j][i].g = 0;
pixel[j][i].b = 0;
pixel[j][i].a = 0;

}
}

Miss rate for writes to pixel:____________%

D. Using code in part C, what fraction of the writes will result in a miss in the 4-way associative cache?

Miss rate for writes to pixel:____________%
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Problem 6. (8 points):
This problem tests your understanding of conflict misses. Consider the following transpose routine

typedef int array[2][2];

void transpose(array dst, array src) {
int i, j;

for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
dst[i][j] = src[j][i];

}
}

}

running on a hypothetical machine with the following properties:

� sizeof(int) == 4.

� The src array starts at address 0 and the dst array starts at address 16 (decimal).

� There is a single L1 cache that is direct mapped and write-allocate, with a block size of 8 bytes.

� Accesses to the src and dst arrays are the only sources of read and write misses, respectively.

A. Suppose the cache has a total size of 16 data bytes (i.e., the block size times the number of sets is
16 bytes) and that the cache is initially empty. Then for each row and col, indicate whether each
access to src[row][col] and dst[row][col] is a hit (h) or a miss (m). For example, reading
src[0][0] is a miss and writing dst[0][0] is also a miss.

dst array

col 0 col 1

row 0 m

row 1

src array

col 0 col 1

row 0 m

row 1

B. Repeat part A for a cache with a total size of 32 data bytes.

dst array

col 0 col 1

row 0 m

row 1

src array

col 0 col 1

row 0 m

row 1
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Problem 7. (10 points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.)

int main () {
if (fork() == 0) {

if (fork() == 0) {
printf("3");

}
else {

pid_t pid; int status;
if ((pid = wait(&status)) > 0) {

printf("4");
}

}
}
else {

printf("2");
exit(0);

}
printf("0");
return 0;

}

For each of the following strings, circle whether (Y) or not (N) this string is a possible output of the program.

A. 32040 Y N

B. 34002 Y N

C. 30402 Y N

D. 23040 Y N

E. 40302 Y N
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Problem 8. (4 points):
Consider the following C program. (For space reasons, we are not checking error return codes. You can
assume that all functions return normally.)

int val = 10;

void handler(sig)
{

val += 5;
return;

}

int main()
{

int pid;

signal(SIGCHLD, handler);
if ((pid = fork()) == 0) {

val -= 3;
exit(0);

}
waitpid(pid, NULL, 0);
printf("val = %d\n", val);
exit(0);

}

What is the output of this program? val = ____________
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Problem 9. (10 points):
The following problem concerns the way virtual addresses are translated into physical addresses.

� The memory is byte addressable.

� Memory accesses are to 4-byte words.

� Virtual addresses are 20 bits wide.

� Physical addresses are 16 bits wide.

� The page size is 4096 bytes.

� The TLB is 4-way set associative with 16 total entries.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB and the page table
for the first 32 pages are as follows:

TLB
Index Tag PPN Valid

0 03 B 1
07 6 0
28 3 1
01 F 0

1 31 0 1
12 3 0
07 E 1
0B 1 1

2 2A A 0
11 1 0
1F 8 1
07 5 1

3 07 3 1
3F F 0
10 D 0
32 0 0

Page Table
VPN PPN Valid VPN PPN Valid

00 7 1 10 6 0
01 8 1 11 7 0
02 9 1 12 8 0
03 A 1 13 3 0
04 6 0 14 D 0
05 3 0 15 B 0
06 1 0 16 9 0
07 8 0 17 6 0
08 2 0 18 C 1
09 3 0 19 4 1
0A 1 1 1A F 0
0B 6 1 1B 2 1
0C A 1 1C 0 0
0D D 0 1D E 1
0E E 0 1E 5 1
0F D 1 1F 3 1
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A. Part 1

(a) The box below shows the format of a virtual address. Indicate (by labeling the diagram) the
fields (if they exist) that would be used to determine the following: (If a field doesn’t exist, don’t
draw it on the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) The box below shows the format of a physical address. Indicate (by labeling the diagram) the
fields that would be used to determine the following:

PPO The physical page offset
PPN The physical page number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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B. Part 2

For the given virtual addresses, indicate the TLB entry accessed and the physical address. Indicate
whether the TLB misses and whether a page fault occurs.

If there is a page fault, enter “-” for “PPN” and leave part C blank.

Virtual address: 7E37C

(a) Virtual address format (one bit per box)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) Address translation
Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

(c) Physical address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address: 16A48

(a) Virtual address format (one bit per box)
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) Address translation
Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

(c) Physical address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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