Full Name:
Andrew ID:

Recitation Section:

CS 15-213, Spring 2001

Exam 1

February 27, 2001
Instructions:

e Make sure that your exam is not missing any sheets, then write your full name and Andrew
ID on the front.

e Write your answers in the space provided below the problem. If you make a mess, clearly
indicate your final answer.

e The exam has a maximum score of 70 points.

e This exam is OPEN BOOK. You may use any books or notes you like. You cannot, however,
use any computers, calculators, palm pilots, Good luck!

TOTAL:

Page 1 of 10

Problem 1. (12 points):

For each of the following statements circle whether it is always true (True), never true (False), or
sometimes true (Some). Assume the integer representation and implementation used by the TA32
architecture. Use the following definitions:

short sy = Some_arbitrary_short();
int x = Some_arbitrary_int();

int y = sy;

unsigned ux = x;

unsigned uy = y;

Also note that INT_MAX is the maximum positive integer and INT_MIN is the most negative integer.

x & -1 == True False Some
INT_MAX + INT_MIN == True False Some

x>0 = x + INTMAX < O True False Some

X + -x == True False Some
(ux >> 1) == (x >> 1) True False Some
(ux > uy) = (x > y) True False Some
ux > INT_MIN True False Some
sy ==y True False Some
((unsigned) sy) == uy True False Some
Cx+1) =="(x-1) True False Some
x > 4 ==x/ 16 True False Some
ux & 255 == ux 7, 256 True False Some

Page 2 of 10

Problem 2. (12 points):
Consider the following 6-bit floating point representation based on the IEEE floating point format:

e There is a sign bit in the most significant bit.
e The next 3 bits are the exponent. The exponent bias is 3.
e The last 2 bits are the fraction.

e The representation encodes numbers of the form: V = (—1)® x M x 2F, where M is the
significand and E is the biased exponent.

The rules are like those in the IEEE standard (normalized, denormalized, representation of 0,
infinity, NAN, and round-to-even).

Please fill in the table below. You do not have to fill in boxes with ”——" in them. If a number
is NAN, you may disregard the M, E, and V fields below. However, fill the Description, Hex, and
Binary fields with valid data.

Here are some guidelines for each field:

Description - A verbal description if the number has a special meaning

Hex - The Hexadecimal equivalent of the Binary field

Binary - Binary representation of the number

M - Significand (same as the M in the formula above)

E - Biased Exponent (same as the E in 2F)

e 1/ - Fractional Value represented

Please fill the M, E, and V fields below with rational numbers (fractions) rather than
decimals

Description Binary Hex M E vV

Largest Denormalized

Largest Normalized (< o)

1 111 01 0x3D

N 0x12

2.0 + 0.375

3.0 x 3.0

Page 3 of 10

Problem 3. (12 points):

This problem tests your understanding of how while loops in C relate to IA32 assembly code. The
following is the assembly code for function foo.

foo:
pushl %ebp
movl %esp,’%ebp
pushl %ebx
movl 8(%ebp),%edx
movl 12(%ebp) ,%ebx
xorl %ecx,%ecx
cmpl %ebx,%edx
jg .L19

.L20:
movl %edx,’%eax
imull %edx,%eax
addl %eax,%ecx
incl Yedx
cmpl %ebx,%edx
jle .L20

.L19:
movl %ecx,%eax
popl ’ebx
movl %ebp,%esp
popl ’%ebp
ret

Fill in the blanks in the definition of foo. The only variables you need are x, y, and result.

int foo (int x, int y) {
int result;

return result;

}

Page 4 of 10

Problem 4. (12 points):

The following problem will test your understanding of stack frames. It is based on the following
function:

int power(int *val, int n)
{
int result = 1;

if (n > 0) result = *val * power(val, n-1);

return result;

}

A compiler on an [A-32 Linux machine produces the following object code for this function, which
we have disassembled (using objdump) back into assembly code:

080483b4 <power>:

80483b4: 55 push Yebp

-> 80483b5: 89 eb mov %esp, %ebp
80483b7: 83 ec 14 sub $0x14,%esp
80483ba: 53 push %ebx
80483bb: 8b 5d 08 mov 0x8 (%ebp) , %ebx
80483be: 8b 55 Oc mov Oxc (%ebp) ,%edx
80483c1: b8 01 00 00 00 mov $0x1,%eax
80483c6: 85 d2 test Y%edx,%edx
80483c8: 7e 10 jle 80483da <power+0x26>
80483ca: 83 c4 f8 add $Oxffff£££8,%esp
80483cd: 8d 42 ff lea Oxffffffff (Yedx) ,%eax
80483d0: 50 push Yeax
80483d1: 53 push %ebx
80483d2: e8 dd ff ff ff call 80483b4 <power>
80483d7: 0f af 03 imul (%ebx) ,%eax
80483da: 8b 5d e8 mov Oxffffffe8(lebp) ,%ebx
80483dd: 89 ec mov %ebp, hesp
80483df: 5d pop %ebp
80483e0: c3 ret
80483el1: 84 76 00 lea 0x0 (%esi) ,%esi

A. On the next page, you have the diagram of the stack immediately after some function makes
a call to power (). The value of register %esp is Oxbfff£f6d8. The instruction to be executed
next is denoted with an arrow (->) in the assembly code above. For each of the numeric values
shown in the table, give a short description of the value. If the value has a corresponding
variable in the original C source code, use the name of this variable as its description.

B. Assume that power () runs until it reaches the position denoted with an arrow (->) again. In
the table on the next stage, fill in the updated stack. Use a numeric value (if possible, else
write n/a) and provide a short description of the value. Cross out any stack space not used.

C. Which instruction (give its address) computes the value n-1?

Page 5 of 10

Address

Numeric Value

Comments/Description

Oxbffff6ed

Oxbffff6e0

Oxbff££704

Oxbffff6dc

0x080483ff

Oxbfff£6d8

Oxbf£f££708

Oxbffff6d4

Oxbff££6d40

Oxbffff6cc

Oxbffff6c8

Oxbffff6cd

Oxbffff6c0

Oxbffff6bc

Oxbffff6b8

Oxbffff6b4d

Oxbff££6b0

Oxbffff6ac

Oxbffff6a8

Oxbffff6ad

Page 6 of 10

Problem 5. (12 points):

For the following problem assume the IA-32 Windows alignment convention—i.e., values of type
double must be 8-byte aligned (vs. the Linux convention where they are only 4-byte aligned).
Consider the following definition:

typedef struct {

short s;
typedef union { int 1i;
short s[3]; double *d;
int i; unionl un;
double d; int j;
} unioni; } structi;

structl A[3][2];

The following template is provided as an aid to help you solve this problem. You do not have to
use it and anything written in this template will not be graded.

Byte Offset
0 4 8 12 16 20 24 28 32 36

What is the byte offset relative to the start of A for each of the following locations (assuming TA-32
conventions):

1. &A[0][0]

2. &A[O0I[0].s

3. &A[o0I[0].4

4. g&A[0][0].4

5. &A[0][0].un.s
6. &A[0][0].un.d
7. &A[1]1[0]

8. &A[0][1]

9. &AfO][0] + 1
10. &A[0]1[0].s + 1
11. &A[0][0].un.i + 1

12. &A[1]

Page 7 of 10

Problem 6. (10 points):

The following C file, p.c, contains a simple function called process as shown below.

extern int status;
void toggle(void);

void process(int n)

{
if (((n < 0) && (status == 1)) || ((»n > 0) && (status == -1))) toggle();
}

The function references an external global variable called status and a function called toggle.
Both status and toggle are defined in the file toggle.c, which is shown below.

int status = 1
int changes =

I
’

void toggle(void)

{
status = -status;
changes++;

}
A relocatable object file p.o has been created and then disassembled using the commands

gee -02 -¢ -0 p.o p.c
objdump -d p.o > p.bdis

The disassembled file p.bdis is shown on the next page. The relocation directives in the relocatable
object file p.o are NOT displayed in p.bdis, because objdump was invoked without the -r flag.
Not shown is the relocatable object file toggle .o, which was created as follows:

gcec -02 -c -o toggle.o toggle.c

Your task is to circle all of the bytes in the disassembled object file p.bdis that the linker 1d will
modify when it creates an executable object file that includes the relocatable object files p.o and
toggle.o.

Page 8 of 10

process.o:

file format e1£f32-1386

Disassembly of section .text:

00000000

0:

[o TN o B (o B0 IV I =

55
89
83
8b
85
7d

: 83
14:
16:
18:
la:
21:
23:
28:
2a:
2b:

74
85
Te
83
75
e8
89
5d
c3

<process>:

eb
ec
45
c0
09

3d 00 00 00 00 01

0od
cO
Oe

3d 00 00 00 00 ff

05
fc
ec

08
08

ff ff ff

push
mov
sub
mov
test
jge
cmpl
je
test
jle
cmpl
jne
call
mov
pop
ret

%ebp

%esp, %ebp
$0x8,%esp

0x8 (%ebp) , %eax
Yeax ,%eax

16 <process+0x16>
$0x1,0x0

23 <process+0x23>
Y%eax,%heax

28 <process+0x28>
$OxfffEf££FE,0x0
28 <process+0x28>
24 <process+0x24>
%ebp, %esp

%ebp

Page 9 of 10

