15-213

“The course that gives CMU its Zip!”

Network Programming
Nov 21, 2002

Topics
m Programmer’s view of the Internet (review)
m Sockets interface
m Writing clients and servers

class26.ppt

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses .
m 128.2.203.179

2. The set of IP addresses is mapped to a set of
identifiers called Internet domain names .

m 128.2.203.179 is mapped to www. cs.cmu.edu

3. A process on one Internet host ca n communicate
with a process on another Internet host over a
connection .

-3- 15-213, F'02

A Client-Server Transaction

Every network application is based on the client-server
model:

m A server process and one or more client processes
m Server manages some resource .
m Server provides service by manipulating resource for clients.

1. Client sends request
Client \ ™~ Server —
Process J N process MEEmlEs
4. Client 2. Server

3. Server sends respon se
handles handles

response request

Note: clients and se rvers are processes run ning on hosts
(can be the same or different hosts).

oo 15-213, F02

1. IP Addresses

32-bit IP addresses are stored i n an IP address struct

m |P addresses are always stored in memory in network byte
order (big-endian byte order)

m True in general for any integer transferred inap acket header
from one machine to another.

® E.g., the port number use d to identify an Interne t connection.

/* Internet address structure */
struct in _addr {
unsigned int s_addr; /* network byte order (big-endian) */

Y

Handy network byte-order con version functions:
htonl: convert long int from host to network byte order.
htons: convert short int from host to network byte orde .
ntohl: convert long int from network to host byte order.
ntohs: convert short int from network to host byte orde .

-4 - 15-213, F'02

2. Domain Naming System (DNS) 3. Internet Connections

The Internet maintains a mapping betw een IP addresses Clients and servers communicate by sending streams
and domain names in a huge worldwide distributed of bytes over connections .

database called DNS.

m Conceptually, programmers can view the DN S database as a
collection of millions of host entry structures

Connections are point-to-point, full-duplex (2-way
communication), and reliable.

/ : DNi :°s: eztry SlLmmEEE Client socket address Server socket address
struct hostent { .) 128.2.194.242:51213 208.216.181.15:
char *h name; /* official domain name of host */ / |
char **h aliases; /* null-terminated array of domain names */ P v NoTTTTIITTTTTTTT ;
int h_addrtype; /* host address type (AF_INET) */ i E;’ 8 Server E
i ; * i * ; < - - > :
i::r 1:;:;9:3;: ,1ist' ;* iﬁzgie;iizt::d::::, r:::rfl iit:csidr/structs */ : i Connection socket pair P\ _(port 80) i
}; - bl ! 4 - i____________»____‘: (128.2.194.242:51213, 208.216.181.15:80) i_________________‘:
Client host address Server host address
. . . - . 128.2.194.242 208.216.181.15
Functions for retrieving host entries from DNS:
m gethostbyname: query key is a DNS domain name. Note: 51213 is an Note: 80 is a well-known port
. . ephemeral port allocated associated with Web servers
_5 n gethostbyaddr :query key is an IP address . 15-213, F02 —6— by the kernel 15-213, F02

Clients Using Ports to Identify Services

Examples of client programs Server host 128.2.194.242

m Web browsers, ftp, telnet, ssh Client host Service request for Web server
128.2.194.242:80 (port 80)
How does a client find the serve r? (i-e., the Web server)
m The IP address in the server s ocket address identifies the Echo server
host (more precisely, an adapter on the host) (port 7)
m The (well-known) port in the server socket address identifies
the service, and thus implicitly identifies the server proce ss
that performs that service. \/
m Examples of well know ports
® Port 7: Echo server Service request for Web server
e Port 23: Telnet server 128.2.194.242:7 (port 80)
® Port 25: Mail server (., the echo server)
® Port 80: Web server Echo server
(port 7)

-7- 15-213, F02 -8- 15-213, F'02

Servers

Servers are long-running processes (daemons).
m Created at boot-time (typically) by the init process (process 1)
m Run continuously until the machine is turned off.

Each server waits for requests to a rrive on a well-known
port associated with a particular service.
m Port 7: echo server
m Port 23: telnet server
m Port 25: mail server
m Port 80: HTTP server

A machine that runs a server process is also often

referred to as a “server.”

15-213, F'02

Sockets Interface

Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of
the Internet protocols.

Provides a user-level interface to the network.
Underlying basis for all Internet a pplications.

Based on client/server programming mode |.

11— 15-213, F02

Server Examples

Web server (port 80)
m Resource: files/compute cycles (CGI programs)

m Service: retrieves files and runs ~ CGI programs on behalf of
the client

FTP server (20, 21)
m Resource: files
m Service: stores and retrieve files

See /etc/services for a
comprehensive lis t of the
services availa ble on a
Linux machine.

Telnet server (23)
m Resource: terminal
m Service: proxies a terminal on the ser ver machine

Mail server (25)
m Resource: email “spool” file
m Service: stores mail message s in spool file

_10- 15-213, F02

Overview of the Sockets Interface

Client Server

open_listenfd

Connection

(socket

open_clientfd <

Await connection
request from
next client

—12 - 15-213, F'02

Sockets

What is a socket?
m To the kernel, a socket is an endpoint of communication.

m To an application, a socket is a file descriptor that lets the
application read/write from/to the network.
® Remember: All Unix I/O dev ices, including networks , are
modeled as files .

Clients and servers communicate wi th each by reading
from and writing to socket descriptors.

The main distinction between regul ar file I/O and socket
I/0 is how the applica tion “opens” the socket

Socket Address Structures

Generic socket address:
m For address arguments to connect, bind, and accept.

m Necessary only becau se C did not have generic (void ¥*)
pointers when the sockets interface was designed.

struct sockaddr {
unsigned short sa_family; /* protocol family */
char sa_data[l4]; /* address data. */

};

Internet-specific socket address:

m Must cast (sockaddr_in *)to (sockaddr *)for connect,
bind, and accept.

struct sockaddr_in {

descriptors. unsigned short sin family; /* address family (always AF_INET) */
unsigned short sin port; /* port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */

unsigned char sin_zero[8]; /* pad to sizeof (struct sockaddr) */

}i

-13- 15-213, F02 -14 - 15-213, F'02

Echo Client Maiin Routine Echo Client: open clientfd

#include "csapp.h" int open_clientfd(char *hostname, int port)

. {]] This function open s a
/* usage: ./echoclient host port */ int clientfd; connection from the cli ent to

int main(int arge, char **argv) struct hostent *hp; the server at hostname:port

{ struct sockaddr_in serveraddr;
int clientfd, port;
char *host, buf[MAXLINE] ;
rio_t rio;

if ((clientfd = socket (AF INET, SOCK STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

host
port

argv[l]; /* Fill in the server's IP address and port */
atoi (argv[2]) ; if ((hp = gethostbyname (hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)):;
serveraddr.sin family = AF INET;
becopy ((char *)hp->h_addr,

(char *)&serveraddr.sin_addr.s_addr, hp->h_length);

serveraddr.sin port = htons (port);

clientfd = Open_clientfd (host, port);
Rio_readinitb (&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio writen(clientfd, buf, strlen(buf));
Rio_readlineb (&rio, buf, MAXLINE) ;
Fputs (buf, stdout); /* Establish a connection with the server */

} if (connect(clientfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)

Close (clientfd) ; return -1;

exit(0); return clientfd;

-15— } 15-213, F02 }

Echo Client: open_clientfd
(socket)

socket creates a socket descriptor on the ¢ lient.

m AF_INET: indicates that the socket is associated with Internet
protocols.

m SOCK_STREAM: selects a reliable byte stream connection.

int clientfd; /* socket descriptor */

if ((clientfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

(more)

17— 15-213, F'02

Echo Client: open_clientfd
(connect)

Finally the client creates a connection with the server.
m Client process suspends (blocks) until the connection is cre ated.

m After resuming, the client is ready to begin exchanging mes sages
with the server via Unix 1/O calls on descriptor sockfd.

/* socket descriptor */
/* server address */
/* generic sockaddr */

int clientfd;
struct sockaddr_in serveraddr;
typedef struct sockaddr SA;

/* Establish a connection with the server */

if (connect(clientfd, (SA *)&serveraddr, sizeof (serveraddr)) < 0)
return -1;

return clientfd;

—~19— 15-213, F'02

Echo Client: open_clientfd
(gethostbyname)

The client then builds the serve r's Internet address.

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr in serveraddr; /* server’s IP address */

/* £ill in the server's IP address and port */
if ((hp = gethostbyname (hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero ((char *) &serveraddr, sizeof (serveraddr)) ;
serveraddr.sin family = AF INET;
becopy ((char *)hp->h_addr,

(char *)&serveraddr.sin_addr.s_addr, hp->h length);

serveraddr.sin _port = htons (port);

_18- 15-213, F02

Echo Server: Main Routine

int main(int argc, char **argv) {
int listenfd, connfd, port, clientlen;
struct sockaddr in clientaddr;
struct hostent *hp;
char *haddrp;

port = atoi(argv[l]); /* the server listens on a port passed
on the command line */
listenfd = open_ listenfd (port) ;

while (1) {

clientlen = sizeof (clientaddr) ;

connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

hp = Gethostbyaddr ((const char *)&clientaddr.sin addr.s_addr,
sizeof (clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet_ntoa(clientaddr.sin_addr);

printf ("server connected to %s (%s)\n", hp->h name, haddrp);

echo (connfd) ;

Close (connfd) ;

~20 - 15-213, F'02

Echo Server: open_listenfd Echo Server: open_listenfd (cont)

int open_listenfd (int port)
{

int listenfd, optval=l;

struct sockaddr_in serveraddr; /* Listenfd will be an endpoint for all requests to port

on any IP address for this host */
bzero((char *) &serveraddr, sizeof (serveraddr)) ;
serveraddr.sin family = AF INET;
serveraddr.sin_addr.s_addr = htonl (INADDR ANY) ;
serveraddr.sin port = htons((unsigned short)port) ;
if (bind(listenfd, (SA *)&serveraddr, sizeof (serveraddr)) < 0)
return -1;

/* Create a socket descriptor */
if ((listenfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

/* Eliminates "Address already in use" error from bind. */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *) &optval , sizeof(int)) < 0)

return -1; /* Make it a listening socket ready to accept

connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;

(more)

return listenfd;

-21- 15-213, F'02 -22- 15-213, F'02

Echo Server: open_listenfd Echo Server: open_listenfd
(socket) (setsockopt)

socket creates a socket descriptor on the s erver. The socket can be given so me attributes.
m AF_INET: indicates that the socket is associated with Internet
protocols.

/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof (int)) < 0)

m SOCK_STREAM: selects a reliable byte stream connection.

int listenfd; /* listening socket descriptor */ return -1;

/* Create a socket descriptor */ .

if ((Listenfd = socket (AT INET, SOCK STREAM, 0)) < O0) Handy trick that allows us to rerunthe server
return -1; immediately after we kill i t.

m Otherwise we would have to wait about 15 secs
m Eliminates “Address already in use " error from bind() .

Strongly suggest you do this for all your servers to
simplify debugging.

-23- 15-213, F'02 -24 - 15-213, F'02

Echo Server: open listenfd
(initialize socket address)

Next, we initialize the sock et with the server’'s Internet
address (IP address and port)

struct sockaddr in serveraddr; /* server's socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof (serveraddr)) ;

serveraddr.sin family = AF INET;

serveraddr.sin_addr.s_addr = htonl (INADDR ANY) ;

serveraddr.sin port = htons((unsigned short)port) ;

IP addr and port stored in network (big- endian) byte order
m htonl () converts longs from host byte order to network byte

order.
m htons () convers shorts from host byte order to network byte
order.
5 15-213, F'02

Echo Server: open_listenfd
(listen)

listen indicates that this socket will accept
connection (connect) requests from clients.

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;
return listenfd;

We're finally ready to enter the mai n server loop that
accepts and processes clie nt connection requests.

-27 - 15-213, F'02

Echo Server: open_listenfd
(bind)

bind associates the socket with the sock et address we
just created.

int listenfd; /* listening socket */
struct sockaddr_in serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

if (bind(listenfd, (SA *)&serveraddr, sizeof (serveraddr)) < 0)
return -1;

— 26— 15-213, F'02

Echo Server: Main Loop

The server loops endlessly , waiting for connection
requests, then reading input from the cli ent, and
echoing the input back to the clie nt.

main() {
/* create and configure the listening socket */

while (1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */
/* Close(): close the connection */

_ 28— 15-213, F'02

Echo Server. accept

accept () blocks waiting for a connection request.

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr in clientaddr;

int clientlen;

clientlen = sizeof (clientaddr) ;
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

accept returns a connected descriptor (connfd) with
the same properties as the listening descriptor
(listenfd)
m Returns when the connection between client and server is
created and ready for 1/O transfers.

m All I/O with the client will be done via the connected socket.

accept also fills in client's IP address.
29— 15-213, F'02

Connected vs. Listening Descriptorns

Listening descriptor
m End point for client connection requests.
m Created once and exists for lifetime of the server.

Connected descriptor
m End point of the connection between client and server.

m A new descriptor is created each time the ser ver accepts a
connection request from a client.

m Exists only as long as it takes to service client.

Why the distinction?

m Allows for concurrent servers that can communica te over
many client connections simultaneously.

® E.g., Each time we rece ive a new request, we fork a child to
handle the request.

—31-— 15-213, F02

Echo Server. accept lllustrated

listenfd (3) 1. Server blocks in accept,
] 0l waiting for connection
Client SR request on listening
clientfd descriptor listenfd.
C°””e°t'?” listenfd(3)
request »0 2. Client makes ¢ onnection
Client Server request by calling and blocking in
clientfd connect.
listenfd (3) 3. Server returns connfd from
o accept. Client returns from
Client Server connect. Connection is now
clientfd conn£d (4) established between clientfd
and connfd.
~-30 - 15-213, F'02

Echo Server: Identifying the Client

The server can determine the domai n name and IP
address of the client.

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */

hp = Gethostbyaddr ((const char *)&clientaddr.sin_addr.s_addr,
sizeof (clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet_ntoa(clientaddr.sin_addr);

printf ("server connected to %s (%s)\n", hp->h name, haddrp);

32— 15-213, F02

Echo Server: echo

The server uses RIO to read a nd echo text lines until
EOF (end-of-file) is encountered.

m EOF notification caused by client calling
close(clientfd).

= IMPORTANT: EOF is a condition, not a particular data byte.

void echo (int connfd)
{
size t n;
char buf [MAXLINE];
rio_t rio;

Rio_readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
printf ("server received %d bytes\n", n);
Rio_writen (connfd, buf, n);

33— 15-213, F'02

Testing the Echo Server With telnet

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 8 bytes: 456789

kittyhawk> telnet bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '*]'.

123

123

Connection closed by foreign host.
kittyhawk> telnet bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '*]'.

456789

456789

Connection closed by foreign host.
kittyhawk>

Testing Servers Using telnet

The telnet program is invaluable for testing serv ers

that transmit ASCII strings over Internet connections
m Our simple echo server
m Web servers
m Mail servers

Usage:

B unix> telnet <host> <portnumber>

m Creates a connection with a server running on <host>and
listening on port <portnumber>.

— 34— 15-213, F'02

Running the Echo Client and Server

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 7 bytes: 456789

kittyhawk> echoclient bass 5000
Please enter msg: 123
Echo from server: 123

kittyhawk> echoclient bass 5000
Please enter msg: 456789

Echo from server: 456789
kittyhawk>

_ 35— 15-213, F'02

— 36— 15-213, F02

For More Information

W. Richard Stevens, “Unix Network Programmi ng:
Networking APIs: Sockets and XTI”, Volume 1,
Second Edition, Prentice Hall, 1998.

m THE network programming bible.

Complete versions of the echo clie nt and server are
developed in the text.
m Available from csapp.cs.cmu.edu

m You should compile and run them for yourselves to se e how
they work.

m Feel free to borrow any of this code.

-37- 15-213, F02

