
System-Level I/O
Nov 14, 2002

System-Level I/O
Nov 14, 2002

TopicsTopics
n Unix I/O
n Robust reading and writing
n Reading file metadata
n Sharing files
n I/O redirection
n Standard I/O

class24.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

A Typical Hardware SystemA Typical Hardware System

main
memory

I/O
bridge

bus interface

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus Expansion slots for
other devices such
as network adapters.

– 3 – 15-213, F’02

Reading a Disk Sector: Step 1Reading a Disk Sector: Step 1

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

– 4 – 15-213, F’02

Reading a Disk Sector: Step 2Reading a Disk Sector: Step 2

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

bus interface

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory.

– 5 – 15-213, F’02

Reading a Disk Sector: Step 3Reading a Disk Sector: Step 3

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

– 6 – 15-213, F’02

Unix FilesUnix Files
A Unix A Unix filefile is a sequence of is a sequence of mm bytes: bytes:

n B0, B1, , Bk , , Bm-1

All I/O devices are re presented as files:All I/O devices are re presented as files:
n /dev/sda2 (/usr disk partition)

n /dev/tty2 (terminal)

Even the kernel is represented as a file:Even the kernel is represented as a file:
n /dev/kmem (kernel memory image)

n /proc (kernel data structures)

– 7 – 15-213, F’02

Unix File TypesUnix File Types
Regular fileRegular file

n Binary or text file.

n Unix does not know the difference!

Directory fileDirectory file
n A file that contains the names and locations of other files.

Character special and block s pecial filesCharacter special and block s pecial files
n Terminals (character special) and disk s (block special)

FIFO (named pipe)FIFO (named pipe)
n A file type used for interprocess comunication

SocketSocket
n A file type used for network communication between

processes

– 8 – 15-213, F’02

Unix I/OUnix I/O

The elegant mapping of files to dev ices allows kernel toThe elegant mapping of files to dev ices allows kernel to
export simple interface called Unix I/O.export simple interface called Unix I/O.

Key Unix idea: All input and output is handled in aKey Unix idea: All input and output is handled in a
consistent and uniform way.consistent and uniform way.

Basic Unix I/O operations (system calls):Basic Unix I/O operations (system calls):
n Opening and closing files

l open()and close()

n Changing the current file position (seek)
l lseek (not discussed)

n Reading and writing a file
l read() and write()

– 9 – 15-213, F’02

Opening FilesOpening Files
Opening a file informs the kernel that you are gettingOpening a file informs the kernel that you are getting

ready to access that file.ready to access that file.

Returns a small identifying integer Returns a small identifying integer file descriptorfile descriptor
n fd == -1 indicates that an error occurred

Each process created by a Unix shell begins life withEach process created by a Unix shell begins life with
three open files associated wi th a terminal:three open files associated wi th a terminal:
n 0: standard input
n 1: standard output
n 2: standard error

int fd; /* file descriptor */

if ((fd = open(Ò/etc/hostsÓ, O_RDONLY)) < 0) {
 perror(ÒopenÓ);
 exit(1);
}

– 10 – 15-213, F’02

Closing FilesClosing Files

Closing a file informs the kernel that you are finishedClosing a file informs the kernel that you are finished
accessing that file.accessing that file.

Closing an already closed file is a recipe for disaster inClosing an already closed file is a recipe for disaster in
threaded programs (more on this later)threaded programs (more on this later)

Moral: Always check return codes, even for seeminglyMoral: Always check return codes, even for seemingly
benign functions such as benign functions such as close()close()

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
 perror(ÒcloseÓ);
 exit(1);
}

– 11 – 15-213, F’02

Reading FilesReading Files
Reading a file copies bytes from the current fileReading a file copies bytes from the current file

position to memory, and then updates file position.position to memory, and then updates file position.

Returns number of bytes read from file Returns number of bytes read from file fdfd into into bufbuf
n nbytes < 0 indicates that an error occurred.
n short counts (nbytes < sizeof(buf)) are possible and

are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
 perror(ÒreadÓ);
 exit(1);
}

– 12 – 15-213, F’02

Writing FilesWriting Files
Writing a file copies bytes from memory to the current fileWriting a file copies bytes from memory to the current file

position, and then updates current file position.position, and then updates current file position.

Returns number of bytes written from Returns number of bytes written from bufbuf to file to file fdfd..
n nbytes < 0 indicates that an error occurred.

n As with reads, short counts are possible and are not errors!

Transfers up to 512 bytes from address Transfers up to 512 bytes from address bufbuf to file to file fdfd

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
 perror(ÒwriteÓ);
 exit(1);
}

– 13 – 15-213, F’02

Unix I/O ExampleUnix I/O Example

Copying standard input to standard output one byte at aCopying standard input to standard output one byte at a
time.time.

Note the use of error handling wrappers for re ad and writeNote the use of error handling wrappers for re ad and write
(Appendix B).(Appendix B).

#include "csapp.h"

int main(void)
{
 char c;

 while(Read(STDIN_FILENO, &c, 1) != 0)
Write(STDOUT_FILENO, &c, 1);

 exit(0);
}

– 14 – 15-213, F’02

Dealing with Short CountsDealing with Short Counts

Short counts can occur in these si tuations:Short counts can occur in these si tuations:
n Encountering (end-of-file) EOF on reads.

n Reading text lines from a terminal.

n Reading and writing network sockets or Unix pipes.

Short counts never occur in these s ituations:Short counts never occur in these s ituations:
n Reading from disk files (except for EOF)

n Writing to disk files.

How should you deal with short c ounts in your code?How should you deal with short c ounts in your code?
n Use the RIO (Robust I/O) package from your textbook’s
csapp.c file (Appendix B).

– 15 – 15-213, F’02

The RIO PackageThe RIO Package

RIO is a set of wrappers that provide efficient and robust I/O inRIO is a set of wrappers that provide efficient and robust I/O in
applications such as network programs that are su bject to shortapplications such as network programs that are su bject to short
counts.counts.

RIO provides two different kinds of functionsRIO provides two different kinds of functions
n Unbuffered input and output of bina ry data

l rio_readn and rio_writen

n Buffered input of binary da ta and text lines
l rio_readlineb and rio_readnb
l Cleans up some p roblems with Stevens’s readline and readn functions.
l Unlike the Stevens routines , the buffered RIO routines are thread-safe and

can be interleaved arbitrarily o n the same descriptor.

Download fromDownload from
csappcsapp..cscs..cmucmu..eduedu/public//public/icsics/code//code/srcsrc//csappcsapp.c.c
csappcsapp..cscs..cmucmu..eduedu/public//public/icsics/code/include//code/include/csappcsapp.h.h

– 16 – 15-213, F’02

Unbuffered RIO Input and OutputUnbuffered RIO Input and Output

Same interface as Unix Same interface as Unix readread and and writewrite

Especially useful for transferring d ata on networkEspecially useful for transferring d ata on network
socketssockets

n rio_readn returns short count only it encounters EOF.

n rio_writen never returns a short count.

n Calls to rio_readn and rio_writen can be interleaved
arbitrarily on the same descriptor.

#include Òcsapp.hÓ

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(nt fd, void *usrbuf, size_t n);

 Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

– 17 – 15-213, F’02

Implementation of rio_readnImplementation of rio_readn
/*
 * rio_readn - robustly read n bytes (unbuffered)
 */
ssize_t rio_readn(int fd, void *usrbuf, size_t n)
{
 size_t nleft = n;
 ssize_t nread;
 char *bufp = usrbuf;

 while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {
 if (errno == EINTR) /* interrupted by sig

 handler return */
nread = 0; /* and call read() again */

 else
return -1; /* errno set by read() */

}
else if (nread == 0)
 break; /* EOF */
nleft -= nread;
bufp += nread;

 }
 return (n - nleft); /* return >= 0 */
}

– 18 – 15-213, F’02

Buffered RIO Input FunctionsBuffered RIO Input Functions

Efficiently read text lines and binary data from a fileEfficiently read text lines and binary data from a file
partially cached in an i nternal memory bufferpartially cached in an i nternal memory buffer

n rio_readlineb reads a text line of up to maxlen bytes from
file fd and stores the line in usrbuf.
l Especially useful for reading text lines from network sockets.

n rio_readnb reads up to n bytes from file fd.
n Calls to rio_readlineb and rio_readnb can be interleaved

arbitrarily on the same descriptor.
l Warning: Don’t interleave with calls to rio_readn

#include Òcsapp.hÓ

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

– 19 – 15-213, F’02

RIO ExampleRIO Example

Copying the lines of a text file from s tandard input toCopying the lines of a text file from s tandard input to
standard output.standard output.

#include "csapp.h"

int main(int argc, char **argv)
{
 int n;
 rio_t rio;
 char buf[MAXLINE];

 Rio_readinitb(&rio, STDIN_FILENO);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)

Rio_writen(STDOUT_FILENO, buf, n);
 exit(0);
}

– 20 – 15-213, F’02

File MetadataFile Metadata

MetadataMetadata is data about data, in this c ase file data. is data about data, in this c ase file data.

Maintained by kernel, acces sed by users with the Maintained by kernel, acces sed by users with the statstat
and and fstatfstat functions.functions.

/* Metadata returned by the stat and fstat functions */
struct stat {
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection and file type */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
};

– 21 – 15-213, F’02

Example of Accessing File MetadataExample of Accessing File Metadata
/* statcheck.c - Querying and manipulating a fileÕs meta data */
#include "csapp.h"

int main (int argc, char **argv)
{
 struct stat stat;
 char *type, *readok;

 Stat(argv[1], &stat);
 if (S_ISREG(stat.st_mode)) /* file type*/

type = "regular";
 else if (S_ISDIR(stat.st_mode))

type = "directory";
 else

type = "other";
 if ((stat.st_mode & S_IRUSR)) /* OK to read?*/

readok = "yes";
 else

readok = "no";

 printf("type: %s, read: %s\n", type, readok);
 exit(0);
}

bass> ./statcheck statcheck.c
type: regular, read: yes
bass> chmod 000 statcheck.c
bass> ./statcheck statcheck.c
type: regular, read: no

– 22 – 15-213, F’02

How the Unix Kernel Represents
Open Files
How the Unix Kernel Represents
Open Files
Two descriptors referencing two distinc t open disk files.Two descriptors referencing two distinc t open disk files.

Descriptor 1 (Descriptor 1 (stdoutstdout) points to terminal, and) points to terminal, and
descriptor 4 points to open disk fil e.descriptor 4 points to open disk fil e.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

– 23 – 15-213, F’02

File SharingFile Sharing

Two distinct descriptors sharing the same disk fileTwo distinct descriptors sharing the same disk file
through two distinct open file table entrie sthrough two distinct open file table entrie s
n E.g., Calling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

File access

...

File size

File type

File A

File B

– 24 – 15-213, F’02

How Processes Share FilesHow Processes Share Files

A child process inherits its pa rent’s open files. Here isA child process inherits its pa rent’s open files. Here is
the situation immediately after a the situation immediately after a forkfork

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor
tables

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=2

...

File pos
refcnt=2

...

Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size

File type

File access

...

File size

File type

File A

File B

– 25 – 15-213, F’02

I/O RedirectionI/O Redirection
Question: How does a shell i mplement I/O redirection?Question: How does a shell i mplement I/O redirection?

unix> ls > foo.txt

Answer: By calling the Answer: By calling the dup2(dup2(oldfdoldfd, , newfdnewfd)) function function
n Copies (per-process) descriptor table entry oldfd to entry
newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

– 26 – 15-213, F’02

I/O Redirection ExampleI/O Redirection Example

 Before calling Before calling dup2(4,1)dup2(4,1), , stdout stdout (descriptor 1) points(descriptor 1) points
to a terminal and descriptor 4 points to an open diskto a terminal and descriptor 4 points to an open disk
file.file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

– 27 – 15-213, F’02

I/O Redirection Example (cont)I/O Redirection Example (cont)

After calling After calling dup2(4,1)dup2(4,1), , stdout stdout is now redirected to theis now redirected to the
disk file pointed at by descri ptor 4.disk file pointed at by descri ptor 4.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=0

...

File pos
refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A

File B

– 28 – 15-213, F’02

Standard I/O FunctionsStandard I/O Functions

The C standard library (The C standard library (libclibc.a.a) contains a collection of) contains a collection of
higher-level higher-level standard I/O standard I/O functionsfunctions
n Documented in Appendix B of K&R.

Examples of standard I/O functions:Examples of standard I/O functions:
n Opening and closing files (fopen and fclose)

n Reading and writing bytes (fread and fwrite)

n Reading and writing text lines (fgets and fputs)

n Formatted reading and writing (fscanf and fprintf)

– 29 – 15-213, F’02

Standard I/O StreamsStandard I/O Streams

Standard I/O models open file s as Standard I/O models open file s as streamsstreams
n Abstraction for a file descriptor and a buffer in memory.

C programs begin life with three open streams (definedC programs begin life with three open streams (defined
in in stdiostdio.h.h))
n stdin (standard input)

n stdout (standard output)

n stderr (standard error)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
 fprintf(stdout, ÒHello, world\nÓ);
}

– 30 – 15-213, F’02

Buffering in Standard I/OBuffering in Standard I/O

Standard I/O functions use buffered I/ OStandard I/O functions use buffered I/ O

printf(ÒhÓ);

h e l l o \n . .

printf(ÒeÓ);
printf(ÒlÓ);

printf(ÒlÓ);
printf(ÒoÓ);

printf(Ò\nÓ);

fflush(stdout);

buf

write(1, buf += 6, 6);

– 31 – 15-213, F’02

Standard I/O Buffering in ActionStandard I/O Buffering in Action

You can see this buffering in a ction for yourself, usingYou can see this buffering in a ction for yourself, using
the always fascinating Unix the always fascinating Unix stracestrace program: program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6...) = 6
...
_exit(0) = ?

#include <stdio.h>

int main()
{
 printf("h");
 printf("e");
 printf("l");
 printf("l");
 printf("o");
 printf("\n");
 fflush(stdout);
 exit(0);
}

– 32 – 15-213, F’02

Unix I/O vs. Standard I/O vs. RIOUnix I/O vs. Standard I/O vs. RIO

Standard I/O and RIO are impl emented using low-levelStandard I/O and RIO are impl emented using low-level
Unix I/O.Unix I/O.

Which ones should you use in your programs?Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

 Standard I/O
functions

C application prog ram

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

 RIO
functions

– 33 – 15-213, F’02

Pros and Cons of Unix I/OPros and Cons of Unix I/O

ProsPros
n Unix I/O is the most general and lowest overhead form of I/O.

l All other I/O packages are implemented usi ng Unix I/O
functions.

n Unix I/O provides functions for accessing file metadata.

ConsCons
n Dealing with short counts is tricky and error prone.

n Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

n Both of these issues are addresse d by the standard I/O and
RIO packages.

– 34 – 15-213, F’02

Pros and Cons of Standard I/OPros and Cons of Standard I/O

Pros:Pros:
n Buffering increases efficiency by decr easing the number of
read and write system calls.

n Short counts are handled automatically.

Cons:Cons:
n Provides no function for accessing file metadata

n Standard I/O is not appropriate for input and output on
network sockets

n There are poorly documented restrictions on s treams that
interact badly with restrictions on sockets

– 35 – 15-213, F’02

Pros and Cons of Standard I/O (cont)Pros and Cons of Standard I/O (cont)

Restrictions on streams:Restrictions on streams:
n Restriction 1: input function cannot follow output function

without intervening call to fflush, fseek, fsetpos, or
rewind.
l Latter three functions a ll use lseek to change file po sition.

n Restriction 2: output function cannot follow an input
function with intervening call to fseek, fsetpos, or rewind.

Restriction on sockets:Restriction on sockets:
n You are not allowed to change the file position of a socket.

– 36 – 15-213, F’02

Pros and Cons of Standard I/O (cont)Pros and Cons of Standard I/O (cont)

Workaround for restriction 1:Workaround for restriction 1:
n Flush stream after every output.

Workaround for restriction 2:Workaround for restriction 2:
n Open two streams on the same descriptor, one for reading

and one for writing:

n However, this requires you to close the same de scriptor
twice:

n Creates a deadly race in conc urrent threaded programs!

FILE *fpin, *fpout;

fpin = fdopen(sockfd, ÒrÓ);
fpout = fdopen(sockfd, ÒwÓ);

fclose(fpin);
fclose(fpout);

– 37 – 15-213, F’02

Choosing I/O FunctionsChoosing I/O Functions

General rule: Use the highest-level I/O functions youGeneral rule: Use the highest-level I/O functions you
can.can.
n Many C programmers are able to do all of their work using

the standard I/O functions.

When to use standard I/O?When to use standard I/O?
n When working with disk or terminal files.

When to use raw Unix I/OWhen to use raw Unix I/O
n When you need to fetch file metadata.
n In rare cases when you need abs olute highest performance.

When to use RIO?When to use RIO?
n When you are reading and writing network socke ts or pipes.
n Never use standard I/O or raw Unix I/O on socke ts or pipes.

– 38 – 15-213, F’02

For Further InformationFor Further Information

The Unix bible:The Unix bible:
n W. Richard Stevens, Adva nced Programming in the Unix

Environment, Addison Wesley, 19 93.

n Somewhat dated, but still useful.

Stevens is arguably the best tec hnical writer ever.Stevens is arguably the best tec hnical writer ever.
n Produced authoritative works in:

l Unix programming
l TCP/IP (the protocol that ma kes the Internet work)
l Unix network programming
l Unix IPC programming.

Tragically, Stevens died Sept 1, 1999.Tragically, Stevens died Sept 1, 1999.

