
Dynamic Memory Allocation II
Nov 7, 2002

Dynamic Memory Allocation II
Nov 7, 2002

TopicsTopics
n Explicit doubly-linked free lists
n Segregated free lists
n Garbage collection
n Memory-related perils and pitfalls

class22.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Keeping Track of Free BlocksKeeping Track of Free Blocks
ll Method 1Method 1 : Implicit list using len gths -- links all blocks: Implicit list using len gths -- links all blocks

ll Method 2Method 2 : Explicit list among the free blocks using: Explicit list among the free blocks using
pointers within the free blockspointers within the free blocks

ll Method 3Method 3 : Segregated free lists: Segregated free lists
n Different free lists for different size classes

ll Method 4Method 4 : Blocks sorted by size (not discus sed): Blocks sorted by size (not discus sed)
n Can use a balanced tree (e.g. Red-Blac k tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

– 3 – 15-213, F’02

Explicit Free ListsExplicit Free Lists

Use data space for link pointersUse data space for link pointers
n Typically doubly linked
n Still need boundary tags for coalescing

n It is important to realize that links are not necessarily in the
same order as the blocks

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C

– 4 – 15-213, F’02

Allocating From Explicit Free ListsAllocating From Explicit Free Lists

free block

pred succ

free block

pred succ

Before:

After:
(with splitting)

– 5 – 15-213, F’02

Freeing With Explicit Free ListsFreeing With Explicit Free Lists
Insertion policyInsertion policy : Where in the free list do you put a: Where in the free list do you put a

newly freed block?newly freed block?
n LIFO (last-in-first-out) policy

l Insert freed block at the beginning of the free list
l Pro: simple and cons tant time
l Con: studies suggest fragmentation is worse than address

ordered.

n Address-ordered policy
l Insert freed blocks s o that free list blocks are always in addres s

order
» i.e. addr(pred) < addr(curr) < addr(succ)

l Con: requires search
l Pro: studies suggest fragmentation is better tha n LIFO

– 6 – 15-213, F’02

Freeing With a LIFO PolicyFreeing With a LIFO Policy

Case 1: a-a-aCase 1: a-a-a
n Insert self at beginn ing of

free list

Case 2: a-a-fCase 2: a-a-f
n Splice out next, coa lesce

self and next, and add to
beginning of free list

pred (p) succ (s)

selfa a

p s

selfa f

before:

p s

fa
after:

– 7 – 15-213, F’02

Freeing With a LIFO Policy (cont)Freeing With a LIFO Policy (cont)

Case 3: f-a-aCase 3: f-a-a
n Splice out prev, coalesce

with self, and add to
beginning of free list

Case 4: f-a-fCase 4: f-a-f
n Splice out prev and next,

coalesce with self, and
add to beginning of li st

p s

selff a

before:

p s

f a
after:

p1 s1

selff f

before:

f
after:

p2 s2

p1 s1 p2 s2

– 8 – 15-213, F’02

Explicit List SummaryExplicit List Summary
Comparison to implicit list:Comparison to implicit list:

n Allocate is linear time in number of free blocks instead of
total blocks -- much faster allocates when most of the
memory is full

n Slightly more complicated allocate and free since n eeds to
splice blocks in and out of the list

n Some extra space for the links (2 extra words ne eded for
each block)

Main use of linked lists i s in conjunction withMain use of linked lists i s in conjunction with
segregated free listssegregated free lists
n Keep multiple linked lists of different size classes, or

possibly for different types of objects

– 9 – 15-213, F’02

Keeping Track of Free BlocksKeeping Track of Free Blocks

Method 1Method 1 : : Implicit listImplicit list using lengths -- links all blocks using lengths -- links all blocks

Method 2Method 2 : : Explicit listExplicit list among the free blocks using among the free blocks using
pointers within the free blockspointers within the free blocks

Method 3Method 3 : : Segregated free listSegregated free list
n Different free lists for different size classes

Method 4Method 4 : Blocks sorted by size: Blocks sorted by size
n Can use a balanced tree (e.g. Red-Black tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

– 10 – 15-213, F’02

Segregated StorageSegregated Storage
Each Each size classsize class has its own collection of blocks has its own collection of blocks

1-2

3

4

5-8

9-16

n Often have separate size class for every small size (2,3,4,…)

n For larger sizes typically have a size c lass for each power of 2

– 11 – 15-213, F’02

Simple Segregated StorageSimple Segregated Storage
Separate heap and free list for each s ize classSeparate heap and free list for each s ize class

No splittingNo splitting

To allocate a block of size n:To allocate a block of size n:
n If free list for size n is not empty,

l allocate first block on list (no te, list can be implicit o r explicit)

n If free list is empty ,
l get a new page
l create new free list from all blocks in page
l allocate first block on list

n Constant time

To free a block:To free a block:
n Add to free list

n If page is empty, return the page for use by another size (optiona l)

Tradeoffs:Tradeoffs:
n Fast, but can fragme nt badly

– 12 – 15-213, F’02

Segregated FitsSegregated Fits
Array of free lists, each one for some size classArray of free lists, each one for some size class

To allocate a block of size n:To allocate a block of size n:
n Search appropriate free list for block of size m > n
n If an appropriate block is found:

l Split block and plac e fragment on appropriate list (optional)

n If no block is found, try next larger class
n Repeat until block is found

To free a block:To free a block:
n Coalesce and place on appropria te list (optional)

TradeoffsTradeoffs
n Faster search than sequential fits (i.e., log time for power of

two size classes)
n Controls fragmentation of simple segregated storage
n Coalescing can increase s earch times

l Deferred coalescing c an help

– 13 – 15-213, F’02

For More Info on AllocatorsFor More Info on Allocators

D. D. KnuthKnuth , “The Art of Computer Programming, Second, “The Art of Computer Programming, Second
Edition”, Addison Wesley, 1973Edition”, Addison Wesley, 1973
n The classic reference on dyna mic storage allocation

Wilson et al, “Dynamic Storage All ocation: A SurveyWilson et al, “Dynamic Storage All ocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop onand Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Memory Management, KinrossKinross , Scotland, Sept, 1995., Scotland, Sept, 1995.
n Comprehensive survey
n Available from CS:APP student site (csapp .cs.cmu .edu)

– 14 – 15-213, F’02

Implicit Memory Management:
Garbage Collection
Implicit Memory Management:
Garbage Collection

Garbage collectionGarbage collection : : automatic reclamation of heap-automatic reclamation of heap-
allocated storage -- application nev er has to freeallocated storage -- application nev er has to free

Common in functional languages, scri pting languages,Common in functional languages, scri pting languages,
and modern object oriented languages:and modern object oriented languages:
n Lisp, ML, Java, Perl , Mathematica ,

Variants (conservative garbage col lectors) exist for CVariants (conservative garbage col lectors) exist for C
and C++and C++
n Cannot collect all garbage

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

– 15 – 15-213, F’02

Garbage CollectionGarbage Collection
How does the memory manager know w hen memoryHow does the memory manager know w hen memory

can be freed?can be freed?
n In general we cannot know what is going to be used in the

future since it depends on conditionals
n But we can tell that certain blocks cannot be used if there

are no pointers to them

Need to make certain assumptions about po intersNeed to make certain assumptions about po inters
n Memory manager can distinguish pointers from non-

pointers
n All pointers point to the start of a block
n Cannot hide pointers (e.g., by coercing them to an int, and

then back again)

– 16 – 15-213, F’02

Classical GC algorithmsClassical GC algorithms

Mark and sweep collection (McCarthy, 1 960)Mark and sweep collection (McCarthy, 1 960)
n Does not move blocks (unless you also “compac t”)

Reference counting (Collins, 1960)Reference counting (Collins, 1960)
n Does not move blocks (not discussed)

Copying collection (Copying collection (MinskyMinsky , 1963), 1963)
n Moves blocks (not discussed)

For more information, see For more information, see Jones and Lin, “GarbageJones and Lin, “Garbage
Collection: Algorithms for Automatic DynamicCollection: Algorithms for Automatic Dynamic
Memory”, John Wiley & Sons, 199 6.Memory”, John Wiley & Sons, 199 6.

– 17 – 15-213, F’02

Memory as a GraphMemory as a Graph
We view memory as a directed graphWe view memory as a directed graph

n Each block is a n ode in the graph
n Each pointer is an e dge in the graph
n Locations not in the heap that contain poin ters into the heap are

called root nodes (e.g. registe rs, locations on the s tack, global
variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is A node (block) is reachable if there is a path from any root to that node. if there is a path from any root to that node.

Non-reachable nodes are Non-reachable nodes are garbage garbage (never needed by the application)(never needed by the application)

– 18 – 15-213, F’02

Assumptions For This LectureAssumptions For This Lecture
ApplicationApplication

n new(n): returns pointer to new bloc k with all locations cleared

n read(b,i): read location i of block b into register
n write(b,i,v): write v into location i of block b

Each block will have a header wordEach block will have a header word
n addressed as b[-1], for a block b

n Used for different purposes in different collectors

Instructions used by the Garbage CollectorInstructions used by the Garbage Collector
n is_ptr(p): determines whether p is a pointer

n length(b): returns the length of bloc k b, not including the hea der

n get_roots(): returns all the roots

– 19 – 15-213, F’02

Mark and Sweep CollectingMark and Sweep Collecting

Can build on top of Can build on top of mallocmalloc /free package/free package
n Allocate using malloc until you “run out of space”

When out of space:When out of space:
n Use extra mark bit in the head of each block

n Mark: Start at roots and set mark bit on all reachable memory

n Sweep: Scan all blocks and free blocks that are not marked

Before mark

root

After mark

After sweep free

Mark bit set

free

– 20 – 15-213, F’02

Mark and Sweep (cont.)Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // do nothing if not pointer
 if (markBitSet(p)) return // check if already marked
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // mark all children
 mark(p[i]);
 return;
}

Mark using depth-first travers al of the memory graph

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
 while (p < end) {
 if markBitSet(p)
 clearMarkBit();
 else if (allocateBitSet(p))
 free(p);
 p += length(p);
}

– 21 – 15-213, F’02

Conservative Mark and Sweep in CConservative Mark and Sweep in C
A conservative collector for C programsA conservative collector for C programs

n Is_ptr() determines if a word is a pointer by checking if it
points to an allocated block of memory.

n But, in C pointers can point to the middle of a block.

So how do we find the beginni ng of the block?So how do we find the beginni ng of the block?
n Can use balanced tree to keep track of all allocated blocks

where the key is the location

n Balanced tree pointers can be stored in he ader (use two
additional words)

header

ptr

head data

left right

size

– 22 – 15-213, F’02

Memory-Related BugsMemory-Related Bugs
DereferencingDereferencing bad pointers bad pointers

Reading Reading uninitialized uninitialized memorymemory

Overwriting memoryOverwriting memory

Referencing nonexistent variablesReferencing nonexistent variables

Freeing blocks multiple timesFreeing blocks multiple times

Referencing freed blocksReferencing freed blocks

Failing to free blocksFailing to free blocks

– 23 – 15-213, F’02

Dereferencing Bad PointersDereferencing Bad Pointers

The classic The classic scanfscanf bugbug

scanf(Ò%dÓ, val);

– 24 – 15-213, F’02

Reading Uninitialized MemoryReading Uninitialized Memory

Assuming that heap data is initiali zed to zeroAssuming that heap data is initiali zed to zero

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 y[i] += A[i][j]*x[j];
 return y;
}

– 25 – 15-213, F’02

Overwriting MemoryOverwriting Memory

Allocating the (possibly) wrong sized objectAllocating the (possibly) wrong sized object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
 p[i] = malloc(M*sizeof(int));
}

– 26 – 15-213, F’02

Overwriting MemoryOverwriting Memory

Off-by-one errorOff-by-one error

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
 p[i] = malloc(M*sizeof(int));
}

– 27 – 15-213, F’02

Overwriting MemoryOverwriting Memory

Not checking the max string sizeNot checking the max string size

Basis for classic buffer overflow a ttacksBasis for classic buffer overflow a ttacks
n 1988 Internet worm
n Modern attacks on Web serve rs
n AOL/Microsoft IM war

char s[8];
int i;

gets(s); /* reads Ò123456789Ó from stdin */

– 28 – 15-213, F’02

Overwriting MemoryOverwriting Memory

Referencing a pointer instead of the objec t it points toReferencing a pointer instead of the objec t it points to

int *BinheapDelete(int **binheap, int *size) {
 int *packet;
 packet = binheap[0];
 binheap[0] = binheap[*size - 1];
 *size--;
 Heapify(binheap, *size, 0);
 return(packet);
}

– 29 – 15-213, F’02

Overwriting MemoryOverwriting Memory

Misunderstanding pointer arithmeticMisunderstanding pointer arithmetic

int *search(int *p, int val) {

 while (*p && *p != val)
 p += sizeof(int);

 return p;
}

– 30 – 15-213, F’02

Referencing Nonexistent VariablesReferencing Nonexistent Variables

Forgetting that local variables dis appear when aForgetting that local variables dis appear when a
function returnsfunction returns

int *foo () {
 int val;
 return &val;
}

– 31 – 15-213, F’02

Freeing Blocks Multiple TimesFreeing Blocks Multiple Times

Nasty!Nasty!

x = malloc(N*sizeof(int));
<manipulate x>
free(x);

y = malloc(M*sizeof(int));
<manipulate y>
free(x);

– 32 – 15-213, F’02

Referencing Freed BlocksReferencing Freed Blocks

Evil!Evil!

x = malloc(N*sizeof(int));
<manipulate x>
free(x);
...
y = malloc(M*sizeof(int));
for (i=0; i<M; i++)
 y[i] = x[i]++;

– 33 – 15-213, F’02

Failing to Free Blocks
(Memory Leaks)
Failing to Free Blocks
(Memory Leaks)
Slow, long-term killer!Slow, long-term killer!

foo() {
 int *x = malloc(N*sizeof(int));
 ...
 return;
}

– 34 – 15-213, F’02

Failing to Free Blocks
(Memory Leaks)
Failing to Free Blocks
(Memory Leaks)
Freeing only part of a data structureFreeing only part of a data structure

struct list {
 int val;
 struct list *next;
};

foo() {
 struct list *head =
 malloc(sizeof(struct list));
 head->val = 0;
 head->next = NULL;
 <create and manipulate the rest of the list>
 ...
 free(head);
 return;
}

– 35 – 15-213, F’02

Dealing With Memory BugsDealing With Memory Bugs

Conventional debugger (Conventional debugger (gdbgdb))
n Good for finding bad pointer dereferences
n Hard to detect the other memory bugs

Debugging Debugging mallocmalloc (CSRI (CSRI UToronto UToronto mallocmalloc))
n Wrapper around conventional malloc
n Detects memory bugs at malloc and free boundaries

l Memory overwrites that corrupt he ap structures
l Some instances of freeing blocks multipl e times
l Memory leaks

n Cannot detect all memory bugs
l Overwrites into the middle o f allocated blocks
l Freeing block twice tha t has been realloca ted in the interim
l Referencing freed block s

– 36 – 15-213, F’02

Dealing With Memory Bugs (cont.)Dealing With Memory Bugs (cont.)

Binary translator (Atom, Purify)Binary translator (Atom, Purify)
n Powerful debugging and analysis technique

n Rewrites text section of executable object file
n Can detect all errors as debugging malloc

n Can also check each individual re ference at runtime
l Bad pointers
l Overwriting
l Referencing outside of allocated block

Garbage collection (Boehm-Garbage collection (Boehm- Weiser Weiser Conservative GC)Conservative GC)
n Let the system free blocks instead of the programmer.

