
Time Measurement
Apr. 8, 2003

TopicsTopics
Time scales

Interval counting

Cycle counters

K-best measurement scheme

class22.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’03

Computer Time Scales

Two Fundamental Time ScalesTwo Fundamental Time Scales
Processor: ~10–9 sec.

External events: ~10–2 sec.
Keyboard input
Disk seek
Screen refresh

ImplicationImplication
Can execute many
instructions while waiting
for external event to occur

Can alternate among
processes without anyone
noticing

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00Time (seconds)

1 ns 1 µs 1 ms 1 s

Integer Add
FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access
Screen Refresh
Keystroke

Microscopic Macroscopic

– 3 – 15-213, F’03

Measurement Challenge

How Much Time Does Program X Require?How Much Time Does Program X Require?
CPU time

How many total seconds are used when executing X?
Measure used for most applications
Small dependence on other system activities

Actual (“Wall”) Time
How many seconds elapse between the start and the
completion of X?
Depends on system load, I/O times, etc.

Confounding FactorsConfounding Factors
How does time get measured?
Many processes share computing resources

Transient effects when switching from one process to another
Suddenly, the effects of alternating among processes become
noticeable

– 4 – 15-213, F’03

“Time” on a Computer System

real (wall clock) time

= user time (time executing instructions in the user process)

+ = real (wall clock) time

We will use the word “time” to refer to user time.

= system time (time executing instructions in kernel on behalf
of user process)

+

= some other user’s time (time executing instructions in
different user’s process)

cumulative user time

– 5 – 15-213, F’03

Activity Periods: Light Load

Most of the time spent
executing one process

Periodic interrupts every
10ms

Interval timer
Keep system from
executing one process to
exclusion of others

Other interrupts
Due to I/O activity

Inactivity periods
System time spent
processing interrupts
~250,000 clock cycles

Activity Periods, Load = 1

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 6 – 15-213, F’03

Activity Periods: Heavy Load

Sharing processor with one other active process

From perspective of this process, system appears to be
“inactive” for ~50% of the time

Other process is executing

Activity Periods, Load = 2

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 7 – 15-213, F’03

Interval Counting

OS Measures Runtimes Using Interval TimerOS Measures Runtimes Using Interval Timer
Maintain 2 counts per process

User time
System time

Each time get timer interrupt, increment counter for
executing process

User time if running in user mode
System time if running in kernel mode

– 8 – 15-213, F’03

Interval Counting Example

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

– 9 – 15-213, F’03

Unix time Command

0.82 seconds user time
82 timer intervals

0.30 seconds system time
30 timer intervals

1.32 seconds wall time

84.8% of total was used running these processes
(.82+0.3)/1.32 = .848

time make osevent
gcc -O2 -Wall -g -march=i486 -c clock.c
gcc -O2 -Wall -g -march=i486 -c options.c
gcc -O2 -Wall -g -march=i486 -c load.c
gcc -O2 -Wall -g -march=i486 -o osevent osevent.c . . .
0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0w

– 10 – 15-213, F’03

Accuracy of Interval Counting

Worst Case AnalysisWorst Case Analysis
Timer Interval = δ
Single process segment measurement can be off by ±δ
No bound on error for multiple segments

Could consistently underestimate, or consistently overestimate

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms

• Min Actual = 60 + ε

• Max Actual = 80 – ε

– 11 – 15-213, F’03

Accuracy of Int. Cntg. (cont.)

Average Case AnalysisAverage Case Analysis
Over/underestimates tend to balance out

As long as total run time is sufficiently large
Min run time ~1 second
100 timer intervals

Consistently miss 4% overhead due to timer interrupts

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms

• Min Actual = 60 + ε

• Max Actual = 80 – ε

– 12 – 15-213, F’03

Cycle Counters

Most modern systems have built in registers that
are incremented every clock cycle

Very fine grained
Maintained as part of process state

» In Linux, counts elapsed global time

Special assembly code instruction to access

On (recent model) Intel machines:
64 bit counter.
RDTSC instruction sets %edx to high order 32-bits, %eax
to low order 32-bits

– 13 – 15-213, F’03

Cycle Counter Period

Wrap Around Times for 550 MHz machineWrap Around Times for 550 MHz machine
Low order 32 bits wrap around every 232 / (550 * 106) = 7.8
seconds

High order 64 bits wrap around every 264 / (550 * 106) =
33539534679 seconds

1065 years

For 2 GHz machineFor 2 GHz machine
Low order 32-bits every 2.1 seconds

High order 64 bits every 293 years

– 14 – 15-213, F’03

Measuring with Cycle Counter
IdeaIdea

Get current value of cycle counter
store as pair of unsigned’s cyc_hi and cyc_lo

Compute something

Get new value of cycle counter

Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{

/* Get current value of cycle counter */
access_counter(&cyc_hi, &cyc_lo);

}

– 15 – 15-213, F’03

Accessing the Cycle Cntr.
GCC allows inline assembly code with mechanism for
matching registers with program variables

Code only works on x86 machine compiling with GCC

Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{

/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

– 16 – 15-213, F’03

Closer Look at Extended ASM

Instruction StringInstruction String
Series of assembly commands

Separated by “;” or “\n”
Use “%%” where normally would use “%”

asm(“Instruction String"
: Output List
: Input List
: Clobbers List);

}

void access_counter
(unsigned *hi, unsigned *lo)

{
/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

– 17 – 15-213, F’03

Closer Look at Extended ASM

Output ListOutput List
Expressions indicating destinations for values %0, %1, …, %j

Enclosed in parentheses
Must be lvalue

» Value that can appear on LHS of assignment

Tag "=r" indicates that symbolic value (%0, etc.), should be
replaced by register

asm(“Instruction String"
: Output List
: Input List
: Clobbers List);

}

void access_counter
(unsigned *hi, unsigned *lo)

{
/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

– 18 – 15-213, F’03

Closer Look at Extended ASM

Input ListInput List
Series of expressions indicating sources for values %j+1, %j+2,
…

Enclosed in parentheses
Any expression returning value

Tag "r" indicates that symbolic value (%0, etc.) will come from
register

asm(“Instruction String"
: Output List
: Input List
: Clobbers List);

}

void access_counter
(unsigned *hi, unsigned *lo)

{
/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

– 19 – 15-213, F’03

Closer Look at Extended ASM

Clobbers ListClobbers List
List of register names that get altered by assembly instruction

Compiler will make sure doesn’t store something in one of these
registers that must be preserved across asm

Value set before & used after

asm(“Instruction String"
: Output List
: Input List
: Clobbers List);

}

void access_counter
(unsigned *hi, unsigned *lo)

{
/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

– 20 – 15-213, F’03

Accessing the Cycle Cntr. (cont.)

Emitted Assembly CodeEmitted Assembly Code

Used %ecx for *hi (replacing %0)

Used %ebx for *lo (replacing %1)

Does not use %eax or %edx for value that must be carried
across inserted assembly code

movl 8(%ebp),%esi # hi
movl 12(%ebp),%edi # lo

#APP
rdtsc; movl %edx,%ecx; movl %eax,%ebx

#NO_APP
movl %ecx,(%esi) # Store high bits at *hi
movl %ebx,(%edi) # Store low bits at *lo

– 21 – 15-213, F’03

Completing Measurement

Get new value of cycle counter

Perform double precision subtraction to get elapsed cycles
Express as double to avoid overflow problems

double get_counter()
{

unsigned ncyc_hi, ncyc_lo
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

}

– 22 – 15-213, F’03

Timing With Cycle Counter

Determine Clock Rate of ProcessorDetermine Clock Rate of Processor
Count number of cycles required for some fixed number of
seconds

Time Function PTime Function P
First attempt: Simply count cycles for one execution of P

double tsecs;
start_counter();
P();
tsecs = get_counter() / (MHZ * 1e6);

double MHZ;
int sleep_time = 10;
start_counter();
sleep(sleep_time);
MHZ = get_counter()/(sleep_time * 1e6);

– 23 – 15-213, F’03

Measurement Pitfalls

OverheadOverhead
Calling get_counter() incurs small amount of overhead

Want to measure long enough code sequence to
compensate

Unexpected Cache EffectsUnexpected Cache Effects
artificial hits or misses

e.g., these measurements were taken with the Alpha cycle
counter:
foo1(array1, array2, array3); /* 68,829 cycles */

foo2(array1, array2, array3); /* 23,337 cycles */

vs.
foo2(array1, array2, array3); /* 70,513 cycles */

foo1(array1, array2, array3); /* 23,203 cycles */

– 24 – 15-213, F’03

Dealing with Overhead & Cache
Effects

int cnt = 1;
double cmeas = 0;
double cycles;
do {
int c = cnt;
P(); /* Warm up cache */
get_counter();
while (c-- > 0)
P();
cmeas = get_counter();
cycles = cmeas / cnt;
cnt += cnt;

} while (cmeas < CMIN); /* Make sure have enough */
return cycles / (1e6 * MHZ);

Always execute function once to “warm up” cache

Keep doubling number of times execute P() until reach some
threshold

Used CMIN = 50000

– 25 – 15-213, F’03

Multitasking Effects

Cycle Counter Measures Elapsed TimeCycle Counter Measures Elapsed Time
Keeps accumulating during periods of inactivity

System activity
Running other processes

Key ObservationKey Observation
Cycle counter never underestimates program run time

Possibly overestimates by large amount

KK--Best Measurement SchemeBest Measurement Scheme
Perform up to N (e.g., 20) measurements of function

See if fastest K (e.g., 3) within some relative factor ε (e.g., 0.001)

K

– 26 – 15-213, F’03

K-Best
Validation

Very good accuracy for < 8msVery good accuracy for < 8ms
Within one timer interval

Even when heavily loaded

Less accurate of > 10msLess accurate of > 10ms
Light load: ~4% error

Interval clock interrupt
handling

Heavy load: Very high error

Intel Pentium III, Linux

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Load 1

Load 2

Load 11

K = 3, ε = 0.001

– 27 – 15-213, F’03

Compensate
For Timer
Overhead

Subtract Timer OverheadSubtract Timer Overhead
Estimate overhead of single
interrupt by measuring periods
of inactivity

Call interval timer to determine
number of interrupts that have
occurred

Better Accuracy for > 10msBetter Accuracy for > 10ms
Light load: 0.2% error

Heavy load: Still very high
error

K = 3, ε = 0.001

Intel Pentium III, Linux
Compensate for Timer Interrupt Handling

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Load 1

Load 2

Load 11

– 28 – 15-213, F’03

K-Best
on NT

Acceptable accuracy for < 50msAcceptable accuracy for < 50ms
Scheduler allows process to
run multiple intervals

Less accurate of > 10msLess accurate of > 10ms
Light load: 2% error

Heavy load: Generally very
high error

K = 3, ε = 0.001

Pentium II, Windows-NT

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Load 1

Load 2

Load 11

– 29 – 15-213, F’03

Time of Day Clock
Unix gettimeofday() function

Return elapsed time since reference time (Jan 1, 1970)

Implementation
Uses interval counting on some machines

» Coarse grained
Uses cycle counter on others

» Fine grained, but significant overhead and only 1
microsecond resolution

#include <sys/time.h>
#include <unistd.h>

struct timeval tstart, tfinish;
double tsecs;
gettimeofday(&tstart, NULL);
P();
gettimeofday(&tfinish, NULL);
tsecs = (tfinish.tv_sec - tstart.tv_sec) +

1e6 * (tfinish.tv_usec - tstart.tv_usec);
– 30 – 15-213, F’03

K-Best Using gettimeofday

LinuxLinux
As good as using cycle
counter

For times > 10 microseconds

WindowsWindows
Implemented by interval
counting

Too coarse-grained

Using gettimeofday

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Win-NT

Linux

Linux-comp

– 31 – 15-213, F’03

Measurement Summary

Timing is highly case and system dependentTiming is highly case and system dependent
What is overall duration being measured?

> 1 second: interval counting is OK
<< 1 second: must use cycle counters

On what hardware / OS / OS version?
Accessing counters

» How gettimeofday is implemented
Timer interrupt overhead
Scheduling policy

Devising a Measurement MethodDevising a Measurement Method
Long durations: use Unix timing functions

Short durations
If possible, use gettimeofday
Otherwise must work with cycle counters
K-best scheme most successful

