
Page 1

Code Optimization I:
Machine Independent Optimizations

Feb 11, 2003
Topics

Machine-Independent Optimizations
Code motion
Strength Reduction/Induction Var Elim
Common subexpression sharing

Tuning
Identifying performance bottlenecks

class10.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, S’03

Great Reality #4
There’s more to performance than asymptotic

complexity
Constant factors matter too!

Easily see 10:1 performance range depending on how code
is written
Must optimize at multiple levels:

algorithm, data representations, procedures, and loops

Must understand system to optimize performance
How programs are compiled and executed
How to measure program performance and identify
bottlenecks
How to improve performance without destroying code
modularity and generality

– 3 – 15-213, S’03

Optimizing Compilers
Provide efficient mapping of program to machine

register allocation
code selection and ordering
eliminating minor inefficiencies

Don’t (usually) improve asymptotic efficiency
up to programmer to select best overall algorithm
big-O savings are (often) more important than constant
factors

but constant factors also matter

Have difficulty overcoming “optimization blockers”
potential memory aliasing
potential procedure side-effects

– 4 – 15-213, S’03

Limitations of Optimizing Compilers
Operate under fundamental constraint

Must not cause any change in program behavior under any
possible condition
Often prevents it from making optimizations when would
only affect behavior under pathological conditions.

Behavior that may be obvious to the programmer
can be obfuscated by languages and coding styles

e.g., data ranges may be narrower than var types suggest

Most analysis is performed only within procedures
whole-program analysis is too expensive in most cases

Most analysis is based only on static information
compiler has difficulty anticipating run-time inputs

The Bottom Line:

When in doubt, do nothing
i.e., The compiler must be conservative.

Page 2

– 5 – 15-213, S’03

Machine-Independent Optimizations
Optimizations that should be done regardless of
processor / compiler

Code Motion
Reduce frequency with which computation performed

If it will always produce same result
Especially moving code out of loop

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
int ni = n*i;
for (j = 0; j < n; j++)

a[ni + j] = b[j];
}

– 6 – 15-213, S’03

Compiler-Generated Code Motion
Most compilers do a good job with array code + simple
loop structures

Code Generated by GCC
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[n*i + j] = b[j];

imull %ebx,%eax # i*n
movl 8(%ebp),%edi # a
leal (%edi,%eax,4),%edx # p = a+i*n (scaled by 4)
Inner Loop

.L40:
movl 12(%ebp),%edi # b
movl (%edi,%ecx,4),%eax # b+j (scaled by 4)
movl %eax,(%edx) # *p = b[j]
addl $4,%edx # p++ (scaled by 4)
incl %ecx # j++
jl .L40 # loop if j<n

for (i = 0; i < n; i++) {
int ni = n*i;
int *p = a+ni;
for (j = 0; j < n; j++)

*p++ = b[j];
}

– 7 – 15-213, S’03

Strength Reduction†

Replace costly operation with simpler one
Shift, add instead of multiply or divide
16*x →→→→ x << 4

Utility machine dependent
Depends on cost of multiply or divide instruction
On Pentium II or III, integer multiply only requires 4 CPU cycles

Recognize sequence of products (induction var analysis)

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)

a[ni + j] = b[j];
ni += n;

}

†As a result of Induction Variable Elimination – 8 – 15-213, S’03

Make Use of Registers
Reading and writing registers much faster than
reading/writing memory

Limitation
Limited number of registers
Compiler cannot always determine whether variable
can be held in register
Possibility of Aliasing
See example later

Page 3

– 9 – 15-213, S’03

Machine-Independent Opts. (Cont.)
Share Common Subexpressions†

Reuse portions of expressions
Compilers often not very sophisticated in exploiting
arithmetic properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplies: i*n, (i–1)*n, (i+1)*n 1 multiply: i*n
leal -1(%edx),%ecx# i-1
imull %ebx,%ecx # (i-1)*n
leal 1(%edx),%eax # i+1
imull %ebx,%eax # (i+1)*n
imull %ebx,%edx # i*n †AKA: Common Subexpression Elimination (CSE)

– 10 – 15-213, S’03

Measuring Performance: Time Scales
Absolute Time

Typically use nanoseconds
10–9 seconds

Time scale of computer instructions

Clock Cycles
Most computers controlled by high frequency clock
signal
Typical Range

100 MHz
» 108 cycles per second
» Clock period = 10ns

Fish machines: 550 MHz (1.8 ns clock period)

2 GHz
» 2 X 109 cycles per second
» Clock period = 0.5ns

– 11 – 15-213, S’03

Measuring Performance
For many programs, cycles per element (CPE)

Especially true of programs that work on lists/vectors
Total time = fixed overhead + CPE * length-of-list

void vsum1(int n)
{
int i;

for (i = 0; i<n; i++)
c[i] = a[i] + b[i];

}

void vsum2(int n)
{
int i;

for (i = 0; i<n; i+=2)
c[i] = a[i] + b[i];
c[i+1] = a[i+1] + b[i+1];

}

• vsum2 only works on even n.
• vsum2 is an example of loop unrolling.

– 12 – 15-213, S’03

Cycles Per Element
Convenient way to express performance of a program
that operates on vectors or lists
Length = n
T = CPE*n + Overhead

0
100
200
300
400
500
600
700
800
900

1000

0 50 100 150 200

vsum1
Slope = 4.0

vsum2
Slope = 3.5

Cy
cl

es

Number of Elements

Page 4

– 13 – 15-213, S’03

Vector ADT

Procedures
vec_ptr new_vec(int len)

Create vector of specified length
int get_vec_element(vec_ptr v, int index, int *dest)

Retrieve vector element, store at *dest
Return 0 if out of bounds, 1 if successful

int *get_vec_start(vec_ptr v)
Return pointer to start of vector data

int vec_length(v)(vec_ptr v)
Return length of vector

Similar to array implementations in Pascal, ML, Java
E.g., always do bounds checking

length

data •••• •••• ••••
0 1 2 length–1

– 14 – 15-213, S’03

Optimization Example

Procedure
Compute sum of all elements of vector
Store result at destination location

void combine1(vec_ptr v, int *dest)
{
int i;
*dest = 0;
for (i = 0; i < vec_length(v); i++) {

int val;
get_vec_element(v, i, &val);
*dest += val;

}
}

– 15 – 15-213, S’03

Optimization Example

Procedure
Compute sum of all elements of integer vector
Store result at destination location
Vector data structure and operations defined via
abstract data type

Pentium II/III Perf: Clock Cycles / Element
42.06 (Compiled -g) 31.25 (Compiled -O2)

void combine1(vec_ptr v, int *dest)
{
int i;
*dest = 0;
for (i = 0; i < vec_length(v); i++) {

int val;
get_vec_element(v, i, &val);
*dest += val;

}
}

– 16 – 15-213, S’03

Understanding Loop

Inefficiency
Procedure vec_length called every iteration
Even though result always the same

void combine1-goto(vec_ptr v, int *dest)
{

int i = 0;
int val;
*dest = 0;
if (i >= vec_length(v))

goto done;
loop:

get_vec_element(v, i, &val);
*dest += val;
i++;
if (i < vec_length(v))

goto loop
done:

}

1 iteration

Page 5

– 17 – 15-213, S’03

Move vec_length Call Out of Loop

Optimization
Move call to vec_length out of inner loop

Value does not change from one iteration to next
Code motion

CPE: 20.66 (Compiled -O2)
vec_length requires only constant time, but significant overhead

void combine2(vec_ptr v, int *dest)
{
int i;
int length = vec_length(v);
*dest = 0;
for (i = 0; i < length; i++) {

int val;
get_vec_element(v, i, &val);
*dest += val;

}
}

– 18 – 15-213, S’03

void lower(char *s)
{
int i;
for (i = 0; i < strlen(s); i++)

if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');

}

Code Motion Example #2
Procedure to Convert String to Lower Case

Extracted from 213 lab submissions, Fall, 1998

– 19 – 15-213, S’03

Lower Case Conversion Performance

Time quadruples when double string length
Quadratic performance of lower

0.0001
0.001

0.01
0.1

1
10

100
1000

25
6

51
2 1k 2k 4k 8k 16
k

32
k

64
k

12
8k

25
6k

CP
U

 S
ec

on
ds

String Length
– 20 – 15-213, S’03

Convert Loop To Goto Form

strlen executed every iteration
strlen linear in length of string

Must scan string until finds '\0'

Overall performance is quadratic

void lower(char *s)
{

int i = 0;
if (i >= strlen(s))
goto done;

loop:
if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');
i++;
if (i < strlen(s))
goto loop;

done:
}

Page 6

– 21 – 15-213, S’03

Improving Performance

Move call to strlen outside of loop
Since result does not change from one iteration to
another
Form of code motion

void lower(char *s)
{
int i;
int len = strlen(s);
for (i = 0; i < len; i++)

if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');

}

– 22 – 15-213, S’03

Lower Case Conversion Performance
Time doubles when double string length
Linear performance of lower2

0.000001

0.0001

0.01

1

100

10000

25
6

51
2 1k 2k 4k 8k 16
k

32
k

64
k

12
8k

25
6k

lower1 lower2

CP
U

 S
ec

on
ds

String Length

– 23 – 15-213, S’03

Optimization Blocker: Procedure Calls
Why doesn’t the compiler move vec_len or
strlen out of the inner loop?
Why doesn’t compiler look at code for vec_len or
strlen?

– 24 – 15-213, S’03

Optimization Blocker: Procedure Calls
Why doesn’t the compiler move vec_len or
strlen out of the inner loop?

Procedure may have side effects
Can alter global state each time called

Function may return diff value for same arguments
Depends on other parts of global state
Procedure lower could interact with strlen

GCC has an extension for this:
int square (int) __attribute__ ((const));

Check out info.

Why doesn’t compiler look at code for vec_len or
strlen?

Page 7

– 25 – 15-213, S’03

Optimization Blocker: Procedure Calls
Why doesn’t the compiler move vec_len or
strlen out of the inner loop?

Procedure may have side effects
Function may return diff value for same arguments

Why doesn’t compiler look at code for vec_len or
strlen?

Linker may overload with different version
Unless declared static

Interprocedural opt isn’t used extensively due to cost

Warning:
Compiler treats procedure call as a black box
Weak optimizations in and around them

– 26 – 15-213, S’03

What next?
void combine2(vec_ptr v, int *dest)
{
int i;
int length = vec_length(v);
*dest = 0;
for (i = 0; i < length; i++) {

int val;
get_vec_element(v, i, &val);
*dest += val;

}
}

– 27 – 15-213, S’03

Reduction in Strength

Optimization
Avoid procedure call to retrieve each vector element

Get pointer to start of array before loop
Within loop just do pointer reference
Not as clean in terms of data abstraction

CPE: 6.00 (Compiled -O2)
Procedure calls are expensive!
Bounds checking is expensive

void combine3(vec_ptr v, int *dest)
{
int i;
int length = vec_length(v);
int *data = get_vec_start(v);
*dest = 0;
for (i = 0; i < length; i++) {

*dest += data[i];
}

Aside: Rational for Classes

Anything else?

– 28 – 15-213, S’03

Eliminate Unneeded Memory Refs

Optimization
Don’t need to store in destination until end
Local variable sum held in register
Avoids 1 memory read, 1 memory write per cycle
CPE: 2.00 (Compiled -O2)

Memory references are expensive!

void combine4(vec_ptr v, int *dest)
{
int i;
int length = vec_length(v);
int *data = get_vec_start(v);
int sum = 0;
for (i = 0; i < length; i++)

sum += data[i];
*dest = sum;

}

Page 8

– 29 – 15-213, S’03

Detecting Unneeded Memory Refs.

Performance
Combine3

5 instructions in 6 clock cycles
addl must read and write memory

Combine4
4 instructions in 2 clock cycles

.L18:
movl (%ecx,%edx,4),%eax
addl %eax,(%edi)
incl %edx
cmpl %esi,%edx
jl .L18

Combine3

.L24:
addl (%eax,%edx,4),%ecx

incl %edx
cmpl %esi,%edx
jl .L24

Combine4

– 30 – 15-213, S’03

Optimization Blocker: Memory Aliasing
Aliasing

Two different memory references specify one location

Example
v: [3, 2, 17]

combine3(v, get_vec_start(v)+2)→ ?
combine4(v, get_vec_start(v)+2)→ ?

Observations
Can easily happen in C

Since allowed to do address arithmetic
Direct access to storage structures

Get in habit of introducing local variables
Accumulating within loops
Your way of telling compiler not to check for aliasing

– 31 – 15-213, S’03

Machine-Independent Opt. Summary
Code Motion/Loop Invariant Code Motion

Compilers good if for simple loop/array structures
Bad in presence of procedure calls and memory aliasing

Strength Reduction/Induction Var Elimination
Shift, add instead of multiply or divide

compilers are (generally) good at this
Exact trade-offs machine-dependent

Keep data in registers rather than memory
compilers are not good at this, since concerned with aliasing

Share Common Subexpressions/CSE
compilers have limited algebraic reasoning capabilities

– 32 – 15-213, S’03

Important Tools
Measurement

Accurately compute time taken by code
Most modern machines have built in cycle counters
Using them to get reliable measurements is tricky

Profile procedure calling frequencies
Unix tool gprof

Observation
Generating assembly code

Lets you see what optimizations compiler can make
Understand capabilities/limitations of particular compiler

Page 9

– 33 – 15-213, S’03

Code Profiling Example
Task

Count word frequencies in text document
Produce words sorted from most to least frequent

Steps
Convert strings to lowercase
Apply hash function
Read words and insert into hash table

Mostly list operations
Maintain counter for each unique word

Sort results

Data Set
Collected works of Shakespeare
946,596 total words, 26,596 unique
Initial implementation: 9.2 seconds that11,519

in11,722
my12,936
you14010
a15,370
of18,514
to20,957
I21,029
and27,529
the29,801

Shakespeare’s
Most freq words

– 34 – 15-213, S’03

Code Profiling
Add information gathering to executable

Computes (approximate) time spent in each function
Time computation method

Periodically (~ every 10ms) interrupt program
Determine what function is currently executing
Increment its timer by interval (e.g., 10ms)

Also collect number of times each function is called

Using
gcc –O2 –pg prog.c –o prog

./prog
Executes in normal fashion, but also generates file gmon.out

gprof prog
Generates profile information based on gmon.out

– 35 – 15-213, S’03

Profiling Results

Call Statistics
Number of calls and cumulative time for each function

Performance Limiter
Using inefficient sorting algorithm
Single call uses 87% of CPU time

% cumulative self self total
time seconds seconds calls ms/call ms/call name
86.60 8.21 8.21 1 8210.00 8210.00 sort_words
5.80 8.76 0.55 946596 0.00 0.00 lower1
4.75 9.21 0.45 946596 0.00 0.00 find_ele_rec
1.27 9.33 0.12 946596 0.00 0.00 h_add

– 36 – 15-213, S’03

Code Optimizations

0
1
2
3
4
5
6
7
8
9

10

Initial Quicksort Iter First Iter Last Big Table Better
Hash

Linear
Lower

Rest
Hash
Lower
List
Sort

CP
U

 S
ec

on
ds

What should we do?

Page 10

– 37 – 15-213, S’03

Code Optimizations

First step: Use more efficient sorting function
Library function qsort

0
1
2
3
4
5
6
7
8
9

10

Initial Quicksort Iter First Iter Last Big Table Better
Hash

Linear
Lower

Rest
Hash
Lower
List
Sort

CP
U

 S
ec

on
ds

What next?

– 38 – 15-213, S’03

Further Optimizations

Iter first: Use iterative func to insert elments into linked
list
Iter last: Iterative func, places new entry at end of list
Big table: Increase number of hash buckets
Better hash: Use more sophisticated hash function
Linear lower: Move strlen out of loop

0

0.5

1

1.5

2

Initial Quicksort Iter First Iter Last Big Table Better
Hash

Linear
Lower

Rest
Hash
Lower
List
Sort

CP
U

 S
ec

on
ds

– 39 – 15-213, S’03

Profiling Observations
Benefits

Helps identify performance bottlenecks
Especially useful when have complex system with many
components

Limitations
Only shows performance for data tested
E.g., linear lower did not show big gain, since words are
short

Quadratic inefficiency could remain lurking in code
Timing mechanism fairly crude

Only works for programs that run for > 3 seconds

– 40 – 15-213, S’03

How Much Effort Should we Expend?
Amdahl’s Law:
Overall performance improvement is a combination

How much we sped up a piece of the system
How important that piece is!

Example, suppose Chose to optimize “rest” & you succeed!
It goes to ZERO seconds!

7

7.5

8

8.5

9

9.5

Initial funny

Rest

Hash

Lower

List

Sort

Page 11

– 41 – 15-213, S’03

How Much Effort Should we Expend?
Amdahl’s Law:
Overall performance improvement is a combination

How much we sped up a piece of the system
How important that piece is!

Example, suppose Chose to optimize “rest” & you succeed!
It goes to ZERO seconds!
Amdahl’s Law

Total time = (1-α)T + αT
Component optimizing takes αT time.
Improvement is factor of k, then:
Tnew = Told[(1-α) + α/k]
Speedup = Told/Tnew = 1/ [(1-α) + α/k]
Maximum Achievable Speedup (k = ∞∞∞∞) = 1/(1-α)

7

7.5

8

8.5

9

9.5

Initial funny

Rest

Hash

Lower

List

Sort

– 42 – 15-213, S’03

A Stack Based Optimization
_fib:

pushl %ebp
movl %esp,%ebp
subl $16,%esp
pushl %esi
pushl %ebx
movl 8(%ebp),%ebx
cmpl $1,%ebx
jle L3
addl $-12,%esp
leal -1(%ebx),%eax
pushl %eax
call _fib
movl %eax,%esi
addl $-12,%esp
leal -2(%ebx),%eax
pushl %eax
call _fib
addl %esi,%eax
jmp L5
.align 4

.align 4
L3:

movl $1,%eax
L5:

leal -24(%ebp),%esp
popl %ebx
popl %esi
movl %ebp,%esp
popl %ebp
ret

int fib(int n)
{

if (n <= 1) return 1;
return fib(n-1)+fib(n-2);

}

