15-213
“The Class That Gives CMU lts Zip!”

Introduction to
Computer Systems

Seth Goldstein & Bruce Maggs
January 14, 2003
Topics:
m Theme
m Five great realities of computer systems
m How this fits within CS curriculum
m Staff, text, and policies
m Lecture topics and assignments
m Lab rationale

classOla.ppt

CS 213 F’02

Course Theme

m Abstraction is good, but don’t forget reality!

Courses to date emphasize abstraction
m Abstract data types
m Asymptotic analysis

These abstractions have limits
m Especially in the presence of bugs
= Need to understand underlying implementations

Useful outcomes
m Become more effective programmers
® Able to find and eliminate bugs efficiently
® Able to tune program performance
m Prepare for later “systems” classes in CS & ECE
® Compilers, Operating Systems, Networks, Computer
a Architecture, Embedded Systems 15-213, S'03

Great Reality #1

Int’s are not Integers, Float's are not Reals

Examples
m |s x220?
® Float’s: Yes!
® Int's:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 -->??
mils(x+y)+z = x+(y+2)?
® Unsigned & Signed Int’s: Yes!
® Float’s:
» (1e20 +-1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

15-213, S'03

Computer Arithmetic

Does not generate random values
m Arithmetic operations have important mathematical
properties

Cannot assume “usual” properties

m Due to finiteness of representations

m Integer operations satisfy “ring” properties
o Commutativity, associativity, distributivity

m Floating point operations satisfy “ordering” properties
® Monotonicity, values of signs

Observation
m Need to understand which abstractions apply in which

contexts
m Important issues for compiler writers and serious application
programmers
—4- 15-213, S'03

Great Reality #2

You've got to know assembly

Chances are, you'll never write program in assembly
m Compilers are much better & more patient than you are

Understanding assembly key to machine-level
execution model
m Behavior of programs in presence of bugs
e High-level language model breaks down
m Tuning program performance
® Understanding sources of program inefficiency

= Implementing system software
® Compiler has machine code as target
® Operating systems must manage process state

-5- 15-213, S'03

Assembly Code Example

Time Stamp Counter
m Special 64-bit register in Intel-compatible machines
= Incremented every clock cycle
m Read with rdtsc instruction

Application
m Measure time required by procedure
® In units of clock cycles

double t;

start_counter () ;

P();

t = get_counter();

printf ("P required %f clock cycles\n”, t);

-6 15-213, S'03

Code to Read Counter

m Write small amount of assembly code using GCC’s asm
facility

m Inserts assembly code into machine code generated by
compiler

Code to Read Counter

static unsigned cyc hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter (unsigned *hi, unsigned *lo)
{
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
"=r" (*hi), "=r" (*lo)
"%edx", "%Seax");
}

/* Record the current value of the cycle counter. */
void start_counter ()

{
}

access_counter (&cyc_hi, &cyc_lo);

/* Number of cycles since the last call to start_counter. */

double get_counter ()
{
unsigned ncyc_hi, ncyc lo;
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter (&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

—-7- 15-213, S'03

15-213, S'03

Measuring Time

Trickier than it Might Look
m Many sources of variation

Example
= Sum integers from 1ton
n Cycles Cycles/n
100 961 9.61
1,000 8,407 8.41
1,000 8,426 8.43
10,000 82,861 8.29
10,000 82,876 8.29
1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43
1,000,000,000 8,371,2305,591 8.37
—9- 15-213, S'03

Timing System Performance

main(int argc, char** argv) int count(int n)
{ {
e int i;
for (i=0; i<t; i++) { int sum = 0;
start_counter();
count (n) ; for (i=0; i<n; i++) {
times[i] = get_counter(); sum += i;
} }
. return sum;
} }
int count(int n) main(int argc, char** argv)
{ {
int i; e
int sum = 0; for (i=0; i<t; i++) {
start_counter();
for (i=0; i<n; i++) { count (n) ;
sum += i; times[i] = get_counter();
} }
return sum; .
K K
—10— 15-213, S'03

Timing System Performance

main(int argc, char** argv) int count(int n)

{ {
, _—

int count(int n) main(int argc, char** argv)

} }

Experiment n cycles/n Experiment n cycles/n
1 10 1649.2 1 10 1657.6
2 10 17.2 2 10 26
3 1000 24.3 la 10 20
4 1000 6.1 2a 10 16.4

3a 1000 1.7
4a 1000 1.6

It's the system, stupid!

11— 15-213, S'03

Great Reality #3

Memory Matters

Memory is not unbounded
m It must be allocated and managed
m Many applications are memory dominated

Memory performance is not uniform

m Cache and virtual memory effects can greatly affect program
performance

m Adapting program to characteristics of memory system can
lead to major speed improvements

Memory referencing bugs especially pernicious
m Effects are distant in both time and space

12— 15-213, S'03

Hardware Organization (Naive)

CPL

Reqgister file

Syslem bus Memory bus
- i

v .
o LTy Man
bridge memory
Expansion slots for
other devices such

UsSB Graphics as network adapters
controller adapter

.-+

Mouse Keyboard Display

13- 15-213, S'03

Memory Performance Example

Implementations of Matrix Multiplication

m Multiple ways to nest loops

/* ijk */
for (i=0; i<n; i++) {
for (§=0; j<mn; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += al[i] [k] * b[k][j];
c[i]l [§j] = sum;
}
}

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
sum = 0.0;
for (j=0; j<n; j++)
sum += a[il] [k] * b[lk] [j];
c[i] [§1 = sum
}
}

— 14—

15-213, S'03

Matmult Performance (Alpha 21164)

Too big for L1 Cache Too big for L2 Cache

o

1 ——]

% ikj

—a— i

& ’

kil

.% —x— ki

2 —o— ki
9]
=

R RN I T R R R R R R R R R R R R
WG E T AT AT ST T8

matrix size (n)

— 15— 15-213, S'03

Memory System

CPU chi

L1 Reqister file
cache -
S| =
Cache bus iI System bus Memory bus
\ ﬁ - l Main
L2 cach . Memary “
Bus interface B memol
¢smu;’<:: K: (DRAI\.?;

— 16—

15-213, S'03

Blocked matmult perf (Alpha 21164)

160

140

120

100

bijk|
bikj
ijk
ikj

80¢-™

60

[tengspn@/pne

40

20

0

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

17— 15-213, S'03

Memory Referencing Bug Example

main ()
{
long int al2];
double d = 3.14;
al[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);

exit(0);
}
Alpha MIPS Linux
-g 5.30498947741318e-315 3.1399998664856 3.14
-0 3.14 3.14 3.14
(Linux version gives correct result, but
implementing as separate function gives
segmentation fault.)
—18— 15-213, S'03

Memory Referencing Errors

C and C++ do not provide any memory protection
m Out of bounds array references
m Invalid pointer values
m Abuses of malloc/free

Can lead to nasty bugs

m Whether or not bug has any effect depends on system and
compiler
m Action at a distance
® Corrupted object logically unrelated to one being accessed
e Effect of bug may be first observed long after it is generated

How can | deal with this?
m Program in Java, Lisp, or ML
m Understand what possible interactions may occur

m Use or develop tools to detect referencing errors
—19- 15-213, S'03

Great Reality #4

There's more to performance than asymptotic
complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code
written

m Must optimize at multiple levels: algorithm, data
representations, procedures, and loops
Must understand system to optimize performance
= How programs compiled and executed

m How to measure program performance and identify
bottlenecks

m How to improve performance without destroying code
modularity and generality

_20- 15-213, S'03

Great Reality #5

Computers do more than execute programs

They need to get data in and out
m |/O system critical to program reliability and performance

They communicate with each other over networks
m Many system-level issues arise in presence of network
® Concurrent operations by autonomous processes
® Coping with unreliable media
@ Cross platform compatibility
® Complex performance issues

21— 15-213, S'03

Role within Curriculum

cs a41 a2 cs a1t
Operating ;
Networks Compilers
Systems
X t /7 ECE 349
Network Processes Machine Code A Eﬁ% 3‘:7 Embedded
Protocols Mem. Mgmt Optimization fenitecture Systems
Exec. Model /
Cs 212 Memory System
Execution 5031213 =
Models ystems
Data Structures Transition from Abstract to
Applications Concrete!
Programming X
mFrom: high-level language model
Cs 211 cs 113 mTo: underlying implementation
Fundamental CEmTET
Structures 9 9
15-213, S'03

—22-

Course Perspective

Most Systems Courses are Builder-Centric

m Computer Architecture

® Design pipelined processor in Verilog
m Operating Systems

® Implement large portions of operating system
m Compilers

® Write compiler for simple language

= Networking
® Implement and simulate network protocols

23— 15-213, S'03

Course Perspective (Cont.)

Our Course is Programmer-Centric
m Purpose is to show how knowing more about the underlying
system, leads one to be a more effective programmer
= Enable you to
® \Write programs that are more reliable and efficient
® Incorporate features that require hooks into OS
» E.g., concurrency, signal handlers
= Not just a course for dedicated hackers
® We bring out the hidden hacker in everyone
m Cover material in this course that you won’t see elsewhere

— 24— 15-213, S'03

Teaching staff

= Instructors /—>This Week only: Wed 3pm
o Prof. Seth Goldstein (Wed 11:00-12:00, WeH 7122)
e Prof. Bruce Maggs (Fri 2:00-3:00, WeH 4123)

u TA's
® Dave Koes (Tue 5-6pm, WeH 3723)
® Jiin Joo Ong (Tue 8-9pm, WeH 3108)
® Shaheen Gandhi (Fri 12:30-1:30pm, WeH 3108)
® Mike Nollen (Mon 3-4pm, WeH 3108)
® Greg Reshko (Wed 2-3pm, WeH 3108)

m Course Admin
® Dorothy Zaborowski (WeH 4116)
These are the nominal office hours. Come talk to us anytime!
(Or phone or send email)
25 15-213, S'03

Textbooks

COMPUTER SYSTEMS

Randal E. Bryant and David R. O'Hallaron,

m “Computer Systems: A Programmer’s
Perspective”, Prentice Hall 2003.

m http://csapp.cs.cmu.edu/

Samuel P. Harbison Ill and Guy L. Steele Jr.,

= “C A Reference Manual 5" Edition”, A Refgtence Manual

Prentice Hall, 2002
m http://careferencemanual.com/

— 26—

15-213, S'03

Course Components

Lectures
m Higher level concepts

Recitations
= Applied concepts, important tools and skills for labs,
clarification of lectures, exam coverage
Labs
m The heart of the course
m 1,2, or 3weeks
m Provide in-depth understanding of an aspect of systems
m Programming and measurement

27— 15-213, S'03

Getting Help

Web
= www.cs.cmu.edu/~213
m Copies of lectures, assignments, exams, solutions
m Clarifications to assignments

Newsgroup
m cmu.cs.class.cs213
m Clarifications to assignments, general discussion

Personal help

m Professors: door open means come on in (no appt
necessary)

m TAs: please mail or zephyr first.

_ 28—

15-213, S'03

Policies: Assignments

Work groups
m Labs 1 -3: You must work alone
m Labs 4 —7: You may work in groups of two

Handins
m Assignments due at 11:59pm on specified due date
m Typically 11:59pm Wednesday evening
m Electronic handins only
m Allowed a total of up to 5 late days for the semester
Makeup exams and assignments
m OK, but must make PRIOR arrangements with either Prof.
Goldstein or Maggs
Appealing grades
= Within 7 days of due date or exam date
m Assignments: Talk to the lead person on the assignment
m Exams: Talk to either Prof. Goldstein or Maggs

29— 15-213, S'03

Cheating

What is cheating?
m Sharing code: either by copying, retyping, looking at, or
supplying a copy of afile.
What is NOT cheating?
m Helping others use systems or tools.
m Helping others with high-level design issues.
m Helping others debug their code.

Usual penalty for cheating:
= Removal from course with failing grade.
= Note in student’s permanent record

—30— 15-213, S'03

Policies: Grading

Exams (40%)
m Two in class exams (10% each)
= Final (20%)
m All exams are open book/open notes.

Labs (60%)
m 7 labs (8-12% each)

Grading Characteristics
m Lab scores tend to be high
® Serious handicap if you don’t hand alab in
m Tests typically have a wider range of scores

31— 15-213, S'03

Facilities

Assignments will use Intel Computer Systems
Cluster (aka “the fish machines™)
m 25 Pentium lll Xeon servers donated by Intel for CS 213
m 550 MHz with 256 MB memory.
m Rack mounted in the 3rd floor Wean machine room.
m We'll be setting up your accounts this week.

Getting help with the cluster machines:
m See course Web page for info
m Please direct questions to your TAs

3 15-213, S'03

Programs and Data

Topics
m Bits operations, arithmetic, assembly language programs,
representation of C control and data structures

m Includes aspects of architecture and compilers
m Learning the tools

m L1: Manipulating bits
m L2: Defusing a binary bomb
m L3: Hacking a buffer bomb

33— 15-213, S'03

Performance

Topics
m High level processor models, code optimization (control and
data), measuring time on a computer

m Includes aspects of architecture, compilers, and OS

Assignments
m L4: Optimizing Code Performance

34— 15-213, S'03

The Memory Hierarchy

Topics
= Memory technology, memory hierarchy, caches, disks,
locality

m Includes aspects of architecture and OS.

Assignments
m L4: Optimizing Code Performance

_35- 15-213, S'03

Linking and Exceptional
Control Flow

Topics
m Object files, static and dynamic linking, libraries, loading

m Hardware exceptions, processes, process control, Unix
signals, nonlocal jumps

m Includes aspects of compilers, OS, and architecture

Assignments
m L5: Writing your own shell with job control

_36- 15-213, S'03

Virtual memory

Topics
= Virtual memory, address translation, dynamic storage
allocation

m Includes aspects of architecture and OS

Assignments
m L6: Writing your own malloc package

37— 15-213, S'03

I/O, Networking, and Concurrency

Topics
= High level and low-level I/O, network programming, Internet
services, Web servers

m concurrency, concurrent server design, threads, I/O
multiplexing with select.

m Includes aspects of networking, OS, and architecture.

Assignments
m L7: Writing your own Web proxy

38— 15-213, S'03

Lab Rationale

Each lab should have a well-defined goal such as solving a puzzle
or winning a contest.

m Defusing a binary bomb.
= Winning a performance contest.

Doing alab should result in new skills and concepts
m Data Lab: computer arithmetic, digital logic.

m Bomb Labs: assembly language, using a debugger, understanding
the stack

m Perf Lab: profiling, measurement, performance debugging.
m Shell Lab: understanding Unix process control and signals
m Malloc Lab: understanding pointers and nasty memory bugs.
m Proxy Lab: network programming, server design
We try to use competition in a fun and healthy way.
m Set athreshhold for full credit.
m Post intermediate results (anonymized) on Web page for glory!

_39- 15-213, S'03

Have a Great Semester!

—40 - 15-213, S'03

