
Performance Evaluation

May 2, 2000

Topics
• Getting accurate measurements
• Amdahl’s Law

15-213

class29.ppt

CS 213 S’00– 2 –class29.ppt

“Time” on a Computer System

real (wall clock) time

= user time (time executing instructing
instructions in the user process)

+ = real (wall clock) time

We will use the word “time” to refer to user time.

= system time (time executing instructing
instructions in kernel on behalf of user process)

+

= some other user’s time (time executing instructing
instructions in different user’s process)

CS 213 S’00– 3 –class29.ppt

Time of Day Clock
• return elapsed time since some reference time (e.g., Jan 1, 1970)
• example: Unix gettimeofday() command
• coarse grained (e.g., ~3µsec resolution on Linux, 10 msec resolution

on Windows NT)
– Lots of overhead making call to OS
– Different underlying implementations give different resolutions

#include <sys/time.h>
#include <unistd.h>

struct timeval tstart, tfinish;
double tsecs;
gettimeofday(&tstart, NULL);
P();
gettimeofday(&tfinish, NULL);
tsecs = (tfinish.tv_sec - tstart.tv_sec) +

1e6 * (tfinish.tv_usec - tstart.tv_usec);

CS 213 S’00– 4 –class29.ppt

Interval (Count-Down) Timers
• set timer to some initial value
• timer counts down toward zero
• coarse grained (e.g., 10 msec resolution on Linux)

void init_etime() {
first.it_value.tv_sec

= 86400;
setitimer(ITIMER_VIRTUAL,

&first, NULL);
}

init_etime();
secs = get_etime();
P();
secs = get_etime() - secs;
printf(“%lf secs\n”, secs);

double get_etime() {
struct itimerval curr;
getitimer(ITIMER_VIRTUAL,&curr);
return(double)(

(first.it_value.tv_sec -
curr.it_value.tv_sec) +

(first.it_value.tv_usec -
curr.it_value.tv_usec)*1e-6);

Using the
interval timer

CS 213 S’00– 5 –class29.ppt

Cycle Counters
• Most modern systems have built in registers that are incremented

every clock cycle
– Very fine grained
– Maintained as part of process state

» Save & restore with context switches
» Counter will reflect time spent by user process

• Special assembly code instruction to access
• On (recent model) Intel machines:

– 64 bit counter.
– RDTSC instruction sets %edx to high order 32-bits, %eax to low order

32-bits

Wrap Around Times for 550 MHz machine
• Low order 32-bits wrap around every 232 / (550 * 106) = 7.8 seconds
• High order 64-bits wrap around every 264 / (550 * 106) = 33539534679

seconds
– 1065.3 years

CS 213 S’00– 6 –class29.ppt

Using the Cycle Counter
• Example

– Function that returns number of cycles elapsed since previous call to
function

– Express as double to avoid overflow problems

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

static double delta_cycles()
{
unsigned ncyc_hi, ncyc_lo;
double result;
/* Get cycle counter as ncyc_hi and ncyc_lo */
. . .
/* Do double precision subtraction */
. . .
cyc_hi = ncyc_hi; cyc_lo = ncyc_lo;
return result;

}

CS 213 S’00– 7 –class29.ppt

Accessing the Cycle Counter (cont.)
• GCC allows inline assembly code with mechanism for matching

registers with program variables
• Code only works on x86 machine compiling with GCC

• Emit assembly with rdtsc and two movl instructions
• Code generates two outputs:

– Symbolic register %0 should be used for ncyc_hi
– Symbolic register %1 should be used for ncyc_lo

• Code has no inputs
• Registers %eax and %edx will be overwritten

unsigned ncyc_hi, ncyc_lo;
/* Get cycle counter */
asm("rdtsc\nmovl %%edx,%0\nmovl %%eax,%1"

: "=r" (ncyc_hi), "=r" (ncyc_lo)
: /* No input */
: "%edx", "%eax");

CS 213 S’00– 8 –class29.ppt

Accessing the Cycle Counter (cont.)

Emitted Assembly Code
delta_cycles:
pushl %ebp # Stack stuff
movl %esp,%ebp
pushl %esi
pushl %ebx

#APP
rdtsc # Result of ASM Statement

movl %edx,%esi # Uses %esi for ncyc_hi
movl %eax,%ecx # Uses %ecx for ncyc_lo
#NO_APP

movl %ecx,%ebx # ncyc_lo
subl cyc_lo,%ebx
cmpl %ecx,%ebx
seta %al
xorl %edx,%edx
movb %al,%dl
movl %esi,%eax # ncyc_hi

CS 213 S’00– 9 –class29.ppt

Using the Cycle Counter (cont.)

/* Keep track of most recent reading of cycle
counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

static double delta_cycles()
{
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
. . .
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double) hi * (1 << 30) * 4 + lo;
. . .

}

CS 213 S’00– 10 –class29.ppt

Timing with Cycle Counter

double tsecs;
delta_cycles();
P();
tsecs = delta_cycles() / (MHZ * 1e6);

CS 213 S’00– 11 –class29.ppt

Measurement Pitfalls
Overhead

• Calling delta_cycles() incurs small amount of overhead
• Want to measure long enough code sequence to compensate

Unexpected Cache Effects
• artificial hits or misses
• e.g., these measurements were taken with the Alpha cycle counter:
foo1(array1, array2, array3); /* 68,829 cycles */
foo2(array1, array2, array3); /* 23,337 cycles */

vs.
foo2(array1, array2, array3); /* 70,513 cycles */
foo1(array1, array2, array3); /* 23,203 cycles */

CS 213 S’00– 12 –class29.ppt

Dealing with Overhead & Cache Effects
• Keep doubling number of times execute P() until reach some

threshold
– Used CMIN = 50000

int cnt = 1;
double cmeas = 0;
double cycles;
do {
int c = cnt;
P(); /* Warm up cache */
(void) delta_cycles();
while (c-- > 0)
P();

cmeas = delta_cycles();
cycles = cmeas / cnt;
cnt += cnt;

} while (cmeas < CMIN); /* Make sure have enough */
return cycles / (1e6 * MHZ);

CS 213 S’00– 13 –class29.ppt

Context Switching
Context switches can also affect cache performance

• e.g., (foo1, foo2) cycles on an unloaded timing server:
» 71,002, 23,617
» 67,968, 23,384
» 68,840, 23,365
» 68,571, 23,492
» 69,911, 23,692

Why Do Context Switches Matter?
• Cycle counter only accumulates when running user process
• Some amount of overhead
• Caches polluted by OS and other user’s code & data

– Cold misses as restart process

Measurement Strategy
• Try to measure uninterrupted code execution

CS 213 S’00– 14 –class29.ppt

Detecting Context Switches
Clock Interrupts

• Processor clock causes interrupt every ∆t seconds
– Typically ∆t = 10 ms
– Same as interval timer resolution

• Can detect by seeing if interval timer has advanced during
measurement

time ∆t

start = get_etime();

/* Perform Measurement */
. . .

if (get_etime() - start > 0)
/* Discard measurement */

Measurement takes place without
interval timer advancing

CS 213 S’00– 15 –class29.ppt

Detecting Context Switches (Cont.)
External Interrupts

• E.g., due to completion of disk operation
• Occur at unpredictable times but generally take a long time to

service

Detecting
• See if real time clock has advanced

– Using coarse-grained interval timer

Reliability
• Good, but not 100%
• Can’t get clean measurements on heavily loaded system

start = get_rtime();

/* Perform Measurement */
. . .

if (get_rtime() - start > 0)
/* Discard measurement */

CS 213 S’00– 16 –class29.ppt

Improving Accuracy
Current Timer Code

• Assume that bad measurements always overestimate time
– True if main problem is due to context switches

• Take multiple samples (2–10) until lowest two are within some small
tolerance of each other

Better Timing Code
• Erroneous measurements both under- and over-estimate time, but

are not correlated to each other
• Look for clustering of times among samples

CS 213 S’00– 17 –class29.ppt

Measurement Summary
It’s difficult to get accurate times

• compensating for overhead
• but can’t always measure short procedures in loops

– global state
– mallocs
– changes cache behavior

It’s difficult to get repeatable times
• cache effects due to ordering and context switches

Moral of the story:
• Adopt a healthy skepticism about measurements!
• Always subject measurements to sanity checks.

CS 213 S’00– 18 –class29.ppt

Amdahl’s Law
You plan to visit a friend in Normandy France and must decide

whether it is worth it to take the Concorde SST ($3,100) or a 747
($1,021) from NY to Paris, assuming it will take 4 hours Pgh to
NY and 4 hours Paris to Normandy.

time NY→ Paris total trip time speedup over 747
747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4

Taking the SST (which is 2.2 times faster) speeds up the overall
trip by only a factor of 1.4!

CS 213 S’00– 19 –class29.ppt

Speedup

T1 T2

Old program (unenhanced)
T1 = time that can NOT

be enhanced.

T2 = time that can be
enhanced.

T2′= time after the
enhancement.

Old time: T = T1 + T2

T1′= T1 T2′≤T2

New program (enhanced)

New time: T′= T1′+ T2′

Speedup: Soverall = T / T′

CS 213 S’00– 20 –class29.ppt

Computing Speedup
Two key parameters:

Fenhanced = T2 / T (fraction of original time that can be improved)
Senhanced = T2 / T2′ (speedup of enhanced part)

T′= T1′+ T2′= T1 + T2′= T(1-Fenhanced) + T2′
= T(1 – Fenhanced) + (T2/Senhanced) [by def of Senhanced]
= T(1 – Fenhanced) + T(Fenhanced /Senhanced) [by def of Fenhanced]
= T((1 – Fenhanced) + Fenhanced/Senhanced)

Amdahl’s Law:
Soverall = T / T′= 1/((1 – Fenhanced) + Fenhanced/Senhanced)

Key idea:
• Amdahl’s Law quantifies the general notion of diminishing returns.
• It applies to any activity, not just computer programs.

CS 213 S’00– 21 –class29.ppt

Amdahl’s Law Example

Trip example:
• Suppose that for the New York to Paris leg, we now consider the

possibility of taking a rocket ship (15 minutes) or a handy rip in
the fabric of space-time (0 minutes):

time NY->Paris total trip time speedup over 747
747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4
rocket 0.25 hours 8.25 hours 2.0
rip 0.0 hours 8 hours 2.1

CS 213 S’00– 22 –class29.ppt

Seek Time =
6ms

Disk surface spins at
3600*k RPM read/write head

arm

Magnetic Disk Example

Average Rotational Latency
• 1/2 revolution takes 1 / (120 * k) seconds = 8.5/k milliseconds

Total Latency:
• k = 1: 14.5 ms 1.0X
• k = 4: 8.1 ms 1.8X

CS 213 S’00– 23 –class29.ppt

Lesson from Amdahl’s Law
Useful Corollary of Amdahl’s law:

• 1 ≤ Soverall ≤1 / (1 – Fenhanced)

Fenhanced Max Soverall Fenhanced Max Soverall

0.0 1 0.9375 16

0.5 2 0.96875 32

0.75 4 0.984375 64

0.875 8 0.9921875 128

Moral: It is hard to speed up a program.

Moral++ : It is easy to make premature optimizations.

CS 213 S’00– 24 –class29.ppt

Other Maxims
Second Corollary of Amdahl’s law:

• When you identify and eliminate one bottleneck in a system,
something else will become the bottleneck

Beware of Optimizing on Small Benchmarks
• Easy to cut corners that lead to asymptotic inefficiencies

– E.g., Intel’s string hash function

