
Internet Services II

April 27, 2000

Topics
• dynamic content
• Tiny Web server tour

15-213

class28.ppt

CS 213 S’00– 2 –class28.ppt

Serving dynamic content

client server

Client sends request to
server.

If request URI contains
the string “/cgi-bin”,
then the server assumes
that the request is for
dynamic content.

GET /cgi-bin/env.pl HTTP/1.1

CS 213 S’00– 3 –class28.ppt

Serving dynamic content

client server
The server creates a child
process and runs the
program identified by the
URI in that process

env.pl

fork/exec

CS 213 S’00– 4 –class28.ppt

Serving dynamic content

client server
The child runs and
generates the dynamic
content.

The server captures the
content of the child and
forwards it without
modification to the client env.pl

content

content

CS 213 S’00– 5 –class28.ppt

Serving dynamic content

client server
The child terminates.
Server waits for the next
client request.

CS 213 S’00– 6 –class28.ppt

Issues in serving dynamic content
How does the client pass program
arguments to the server?

How does the server pass these
arguments to the child?

How does the server pass other
info relevant to the request to
the child?

How does the server capture the
content produced by the child?

These issues are addressed by
the Common Gateway Interface
(CGI) specification.

client server

content

content
request

create

env.pl

CS 213 S’00– 7 –class28.ppt

CGI
Because the children are written according to the
CGI spec, they are often called CGI programs.

Because many CGI programs are written in Perl, they
are often called CGI scripts.

However, CGI really defines a simple standard for
transferring information between the client
(browser), the server, and the child process.

CS 213 S’00– 8 –class28.ppt

add.com:
THE Internet addition portal!

Ever need to add two numbers together and you just
can’t find your calculator?

Try Dr. Dave’s addition service at add.com: THE
Internet addition portal!
• Takes as input the two numbers you want to add together.
• Returns their sum in a tasteful personalized message.

After the IPO we’ll expand to multiplication!

CS 213 S’00– 9 –class28.ppt

The add.com experience
input URL

Output page

host port CGI program args

CS 213 S’00– 10 –class28.ppt

Serving dynamic content with GET
Question: How does the client pass arguments to
the server?

Answer: The arguments are appended to the URI

Can be encoded directly in a URL typed to a
browser or a URL in an HTML link
• http://add.com/cgi-bin/adder?1&2
• adder is the CGI program on the server that will do the

addition.
• argument list starts with “?”
• arguments separated by “&”
• spaces represented by “+” or “%20”

Can also be generated by an HTML form
<form method=get action="http://add.com/cgi-bin/postadder">

CS 213 S’00– 11 –class28.ppt

Serving dynamic content with GET
URL:

• http://add.com/cgi-bin/adder?1&2

Result displayed on browser:

Welcome to add.com: THE Internet addition portal.

The answer is: 1 + 2 = 3

Thanks for visiting! Tell your friends.

CS 213 S’00– 12 –class28.ppt

Serving dynamic content with GET
Question: How does the server pass these
arguments to the child?

Answer: In environment variable QUERY_STRING
• a single string containing everything after the “?”
• for add.com: QUERY_STRING = “1&2”

/* child code that accesses the argument list */
if ((buf = getenv("QUERY_STRING")) == NULL) {
exit(1);

}

/* extract arg1 and arg2 from buf and convert */
...
n1 = atoi(arg1);
n2 = atoi(arg2);

CS 213 S’00– 13 –class28.ppt

Serving dynamic content with GET
Question: How does the server pass other info
relevant to the request to the child?

Answer: in a collection of environment variables
defined by the CGI spec.

CS 213 S’00– 14 –class28.ppt

Some CGI environment variables
General

• SERVER_SOFTWARE
• SERVER_NAME
• GATEWAY_INTERFACE (CGI version)

Request-specific
• SERVER_PORT
• REQUEST_METHOD (GET, POST, etc)
• QUERY_STRING (contains GET args)
• REMOTE_HOST (domain name of client)
• REMOTE_ADDR (IP address of client)
• CONTENT_TYPE (for POST, type of data in message body, e.g.,
text/html)

• CONTENT_LENGTH (length in bytes)

CS 213 S’00– 15 –class28.ppt

Some CGI environment variables
In addition, the value of each header of type type
received from the client is placed in environment
variable HTTP_type
• Examples:

–HTTP_ACCEPT
–HTTP_HOST
–HTTP_USER_AGENT (any “-” is changed to “_”)

CS 213 S’00– 16 –class28.ppt

Serving dynamic content with GET
Question: How does the server capture the content produced by

the child?
Answer: The child writes its headers and content to stdout.

• Server maps socket descriptor to stdout (more on this later).
• Notice that only the child knows the type and size of the content. Thus

the child (not the server) must generate the corresponding headers.

/* child generates the result string */
sprintf(content, "Welcome to add.com: THE Internet addition portal\

<p>The answer is: %d + %d = %d\
<p>Thanks for visiting!\n",
n1, n2, n1+n2);

/* child generates the headers and dynamic content */
printf("Content-length: %d\n", strlen(content));
printf("Content-type: text/html\n");
printf("\r\n");
printf("%s", content);

CS 213 S’00– 17 –class28.ppt

Serving dynamic content with GET
bass> tiny 8000
GET /cgi-bin/adder?1&2 HTTP/1.1
Host: bass.cmcl.cs.cmu.edu:8000
<CRLF>

kittyhawk> telnet bass 8000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
GET /cgi-bin/adder?1&2 HTTP/1.1
Host: bass.cmcl.cs.cmu.edu:8000
<CRLF>
HTTP/1.1 200 OK
Server: Tiny Web Server
Content-length: 102
Content-type: text/html
<CRLF>
Welcome to add.com: THE Internet addition portal.
<p>The answer is: 1 + 2 = 3
<p>Thanks for visiting!
Connection closed by foreign host.
kittyhawk>

HTTP request received by
server

HTTP request sent by client
HTTP response generated by
the server
HTTP response generated by
the CGI program

CS 213 S’00– 18 –class28.ppt

The Tiny Web server
Tiny is a minimal Web server written in 250 lines of C.
Serves static and dynamic content with the GET method.

• text files, HTML files, GIFs, and JPGs.
• support CGI programs

Neither robust, secure, nor complete.
• It doesn’t set all of the CGI environment variables.
• Only implements GET method.
• Weak on error checking.

Interesting to study as a template for a real Web server.
Ties together many of the subjects we have studied this

semester:
• VM (mmap)
• process management (fork, wait, exec)
• network programming (sockets interface to TCP)

CS 213 S’00– 19 –class28.ppt

Tiny: cerror
cerror() returns HTML error messages to the client.

• stream is the childfd socket opened as a Unix stream so that we
can use handy routines such as fprintf and fgets instead of read
and write.

/*
* cerror - returns an error message to the client
*/
void cerror(FILE *stream, char *cause, char *errno,

char *shortmsg, char *longmsg) {
fprintf(stream, "HTTP/1.1 %s %s\n", errno, shortmsg);
fprintf(stream, "Content-type: text/html\n");
fprintf(stream, "\n");
fprintf(stream, "<html><title>Tiny Error</title>");
fprintf(stream, "<body bgcolor=""ffffff"">\n");
fprintf(stream, "%s: %s\n", errno, shortmsg);
fprintf(stream, "<p>%s: %s\n", longmsg, cause);
fprintf(stream, "<hr>The Tiny Web server\n");

}

CS 213 S’00– 20 –class28.ppt

Tiny: main loop
Tiny loops continuously, serving client requests for
static and dynamic content.

/* open FTP listening socket */
...

while(1) {
/* wait for connection request */
/* read and parse HTTP header */
/* if request is for static content, retrieve file */
/* if request is for dynamic content, run CGI program */

}

CS 213 S’00– 21 –class28.ppt

Tiny: read HTTP request
/* open the child socket descriptor as a stream */
if ((stream = fdopen(childfd, "r+")) == NULL)
error("ERROR on fdopen");

/* get the HTTP request line */
fgets(buf, BUFSIZE, stream);
sscanf(buf, "%s %s %s\n", method, uri, version);

/* tiny only supports the GET method */
if (strcasecmp(method, "GET")) {
cerror(stream, method, "501", "Not Implemented",

"Tiny does not implement this method");
fclose(stream);
close(childfd);
continue;

}

/* read (and ignore) the HTTP headers */
fgets(buf, BUFSIZE, stream);
while(strcmp(buf, "\r\n")) {
fgets(buf, BUFSIZE, stream);

}

CS 213 S’00– 22 –class28.ppt

Tiny: Parse the URI in the HTTP request
/* parse the uri */
if (!strstr(uri, "cgi-bin")) { /* static content */
is_static = 1;
strcpy(cgiargs, "");
strcpy(filename, ".");
strcat(filename, uri);
if (uri[strlen(uri)-1] == '/')
strcat(filename, "index.html");

}
else { /* dynamic content: get filename and its args */
is_static = 0;
p = index(uri, '?'); /* ? separates file from args */
if (p) {
strcpy(cgiargs, p+1);
*p = '\0';

}
else {
strcpy(cgiargs, "");

}
strcpy(filename, ".");
strcat(filename, uri);

}

CS 213 S’00– 23 –class28.ppt

Tiny: access check
A real server would do extensive checking of access
permissions here.

/* make sure the file exists */
if (stat(filename, &sbuf) < 0) {
cerror(stream, filename, "404", "Not found",

"Tiny couldn't find this file");
fclose(stream);
close(childfd);
continue;

}

CS 213 S’00– 24 –class28.ppt

Tiny: serve static content
A real server would serve many more file types.

/* serve static content */
if (is_static) {
if (strstr(filename, ".html"))
strcpy(filetype, "text/html");

else if (strstr(filename, ".gif"))
strcpy(filetype, "image/gif");

else if (strstr(filename, ".jpg"))
strcpy(filetype, "image/jpg");

else
strcpy(filetype, "text/plain");

/* print response header */
fprintf(stream, "HTTP/1.1 200 OK\n");
fprintf(stream, "Server: Tiny Web Server\n");
fprintf(stream, "Content-length: %d\n", (int)sbuf.st_size);
fprintf(stream, "Content-type: %s\n", filetype);
fprintf(stream, "\r\n");
fflush(stream);
...

CS 213 S’00– 25 –class28.ppt

Tiny: serve static content (cont)
Notice the use of mmap() to copy the file that the
client requested back to the client, via the stream
associated with the child socket descriptor.

...

/* print arbitrary sized response body */
fd = open(filename, O_RDONLY);
p = mmap(0, sbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
fwrite(p, 1, sbuf.st_size, stream);
munmap(p, sbuf.st_size);

}

CS 213 S’00– 26 –class28.ppt

Tiny: serve dynamic content
A real server would do more complete access
checking and would initialize all of the CGI
environment variables.

/* serve dynamic content */
else {
/* make sure file is a regular executable file */
if (!(S_IFREG & sbuf.st_mode) || !(S_IXUSR & sbuf.st_mode)) {
cerror(stream, filename, "403", "Forbidden",

"You are not allow to access this item");
fclose(stream);
close(childfd);
continue;

}

/* initialize the CGI environment variables */
setenv("QUERY_STRING", cgiargs, 1);

...

CS 213 S’00– 27 –class28.ppt

Tiny: serve dynamic content (cont)
Next, the server sends as much of the HTTP
response header to the client as it can.

Only the CGI program knows the content type and
size.

Notice that we don’t mix stream (fprintf) and basic
(write) I/O. Mixed outputs don’t generally go out in
program order.

/* print first part of response header */
sprintf(buf, "HTTP/1.1 200 OK\n");
write(childfd, buf, strlen(buf));
sprintf(buf, "Server: Tiny Web Server\n");
write(childfd, buf, strlen(buf));

...

CS 213 S’00– 28 –class28.ppt

Tiny: serve dynamic content (cont)
dup2(fd1, fd2) makes descriptor fd2 to be a copy
of fd1, closing fd2 if necessary.

/* create and run the child CGI process */
pid = fork();
if (pid < 0) {
perror("ERROR in fork");
exit(1);

}
else if (pid > 0) { /* parent */
wait(&wait_status);

}
else { /* child */
close(0); /* close stdin */
dup2(childfd, 1); /* map socket to stdout */
dup2(childfd, 2); /* map socket to stderr */
if (execve(filename, NULL, environ) < 0) {
perror("ERROR in execve");

}
}

} /* end while(1) loop */

The dup2 calls
are the reason
that the bytes
that the child
sends to stdout
end up back at
the client.

Notice the use
of libc’s global
environ variable
in the execve
call.

CS 213 S’00– 29 –class28.ppt

Tiny sources
The complete sources for the Tiny server are
available from the course Web page.
• follow the “Lectures” link.

