15-213

Virtual Memory
March 23, 2000

Topics
e Motivations for VM
e Address translation
e Accelerating address translation with TLBs
e Pentium 117111 memory system

cl ass20. ppt

Motivation #1: DRAM a ‘“Cache” for Disk

The full address space is quite large:
e 32-bit addresses: ~4,000,000,000 (4 billion) bytes

e 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes
Disk storage is ~30X cheaper than DRAM storage

- 8 GB of DRAM: ~$12,000

e 8 GB of disk: ~$400

To access large amounts of data in a cost-effective
manner, the bulk of the data must be stored on disk

256 MB: ~$400 /iGB: ~$ﬂ

4 MB: ~$400 . >
SRAM | «—> DRAM |¢—» Disk

_—/

cl ass20. ppt

Levels iIn Memory Hierarchy

cache virtual memory
< > <« >
C
CPU 8B a 32B Memory 4 KB @
C
regs "
e
Register Cache Memory Disk Memory
size: 32B 32 KB-4MB 128 MB 20 GB
speed: 2 NS 4 ns 60 ns 8 ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 328 4 KB
larger, slower, cheaper I

cl ass20. ppt

DRAM vs. SRAM as a ‘“Cache”
DRAM vs. disk is more extreme than SRAM vs. DRAM

e access latencies:

— DRAM is ~10X slower than SRAM

—disk is ~100,000X slower than DRAM
e importance of exploiting spatial locality:

— first byte is ~100,000X slower than successive bytes on disk

»VS. ~4X improvement for page-mode vs. regular accesses to DRAM

e Bottom line:

— design of DRAM caches driven by enormous cost of misses

SRAM l&—— DRAM |l¢—» Disk

cl ass20. ppt

Impact of These Properties on Design

If DRAM was to be organized similar to an SRAM
cache, how would we set the following design
parameters?

e Line size?

e Associativity?
e Replacement policy (if associative)?

e Write through or write back?

What would the impact of these choices be on:
e MISS rate
e hit time
e miss latency

e tag overhead
cl ass20. ppt

Locating an Object In a “Cache”
1. Search for matching tag

e SRAM cache

Object Name

X

e« DRAM cache

= X? <

2. Use indirection to look up actual object location

“Cache”
Tag Data
O/: D 243
T: X 17
h J 105

Object Name

X

T~

Lookup Table “Cache”
Location Data
D: 0] 243
J: N:—1 1/v 1:7
~— =
X: 1 N-1 105

cl ass20. ppt

A System with Physical Memory Only

Examples:
e most Cray machines, early PCs, nearly all embedded systems, etc.

Memory

O:
Physical 1-
Addresses

/

T~

|N—1:

CPU

Addresses generated by the CPU point directly to bytes in physical

memory
cl ass20. ppt

A System with Virtual Memory

Examples:

- workstations, servers, modern PCs, etc. Memory
O:
Page Table 1:
Virtual Phvsical
Addresses 0: Add):’esses
1:
CPU

P-1:

|N—l:

Address Translation: the hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

cl ass20. ppt

Page Faults (Similar to ‘“Cache Misses™)

What If an object is on disk rather than in memory?
e Page table entry indicates that the virtual address is not in memory

e An OS exception handler is invoked, moving data from disk into
memory

— current process suspends, others can resume
— OS has full control over placement, etc.

Before fault After fault
Memory Memory
Virtual 2ge Tabee . Page Table
agaresses | [aadresees v it e e
PY . N CPU . \ 4
= A A
Disk =T

cl ass20. ppt

Servicing a Page Fault

(1) Initiate Block Read

Processor Signals
Controller Processor |
» Read block of length P Reg (3) Read
starting at disk address X | Done
and store starting at
memory address Y Cache

Read Occurs |
e Direct Memory Access

(DMA)
e Under control of 1/0 (2) DMA Transfer. v
controller I OII
- roller
1/0 Controller Signals IRy
Completion ‘

e Interrupt processor

e OS resumes suspended
process

Disk Dis
*—

cl ass20. ppt

Motivation #2: Memory Management

Multiple processes can reside in physical memory.

How do we resolve address conflicts?
e what if two processes access something at the same address?

memory invisible to

kernel virtual memory user code

stack

v
A
Linux/x86 Memory mapped region

forshared libraries

Focess
P A

memory runtime heap (via malloc)|

image uninitialized data (.bss)

initialized data (.data)

program text (.text)
forbidden

%esp

the “brk” ptr

cl ass20. ppt

Solution: Separate Virtual Addr. Spaces

e Virtual and physical address spaces divided into equal-sized blocks
— blocks are called “pages” (both virtual and physical)

e Each process has its own virtual address space
— operating system controls how virtual pages as assigned to physical

memory
O -

Virtual 0 Address Physical
Address VP 1 Translation o PP 2 Addres
Space for P2 s
Process 1. Space

N-1 (DRAM)

(e.g., read/only
Virtual PP 7 library code)
Irtua 0
VP 1

Address VP 2 PP 10
Space for —
Process 2: | _; M-1

cl ass20. ppt

Contrast: (Old) Macintosh Memory Model

Does not use traditional virtual memory

P1 Pointer Table Shared Address Space

Pro.cw A
%

B

“Handles” P2 Pointer T c
ProgeSS}

— | D

‘__
—>
E

All program objects accessed through “handles™

e indirect reference through pointer table

e objects stored in shared global address space
cl ass20. ppt

(Old) Macintosh Memory Management

Allocation / Deallocation
e Similar to free-list management of malloc/free
Compaction

e Can move any object and just update the (unique) pointer iIn
pointer table

P1 Pointer Table Shared Address Space

/ B
Pro.cw —>
,’::::555 A
“Handles™ P2 PointeyTable c
ProgeSS}
./ D
— —>.
E

cl ass20. ppt

(Old) Mac vs. VM-Based Memory Mgmt

Allocating, deallocating, and moving memory:
e can be accomplished by both techniques

Block sizes:
e Mac: variable-sized
—may be very small or very large
e VM: fixed-size
—size is equal to one page (4KB on x86 Linux systems)
Allocating contiguous chunks of memory:
e Mac: contiguous allocation is required

e VM: can map contiguous range of virtual addresses to disjoint
ranges of physical addresses

Protection?
e Mac: “wild write” by one process can corrupt another’ data

cl ass20. ppt

Motivation #3: Protection

Page table entry contains access rights information

e hardware enforces this protection (trap into OS if violation
OCCurs)

Page Tables Memory
Read? Write? Physical Addr 0:
VP 0] Yes No PP 9 1]
Process I |vp 1] Yes || Yes PP 4
VP 21 No No XXXXXXX —»
Read? Write? Physical Addr
VP 0] Yes Yes PP 6 /
Process j: |vp 1] Yes No PP 9 N-1
VP 21 No No XXX XXXX

cl ass20. ppt

Summary: Motivations for VM

e Uses physical DRAM memory as a cache for the disk
e address space of a process can exceed physical memory size
e sum of address spaces of multiple processes can exceed physical
memory
e Simplifies memory management
e Can have multiple processes resident in main memory.
e Each process has its own address space (O, 1, 2, 3, .., n-1)
e Only “active” code and data is actually in memory
e Can easily allocate more memory to process as needed.
— external fragmentation problem nonexistent

e Provides protection
e One process cant interfere with another.
— because they operate in different address spaces.
e User process cannot access privileged information
— different sections of address spaces have different permissions.

cl ass20. ppt

VM Address Translation

{0, 1, . . ., N-} virtual address space N > M
{0, 1, . . . , M1} physical address space

MAP: V® P U {A& address mapping function

MAP(a) = a" If data at virtual address a is present at physical
address a" in P
= A if data at virtual address a is not present in P

page fault

/ fault

> handler

Processor

e | A

Q

OS performs

virtual address gﬁﬂ::hc;g the physical address this transfer
memory mgmt unit (MMU) (only If miss)

cl ass20. ppt

VM Address Translation

Parameters

e P = 2P = page size (bytes).
« N = 2" = Virtual address limit
e M = 2™ = Physical address limit

n—-1

p p-l

virtual page number

page offset

|

Caddress translation>

|

p p-l

v

0]

physical page number

page offset

virtual address

physical address

Notice that the page offset bits don"t change as a result of translation

cl ass20. ppt

Page Tables

Virtual Page Memory resident

Number page table
(physical page _
valid or disk address) Physical Memory

|

Disk Storage
(swap file or
regular file system file)

O

FlokFlolkFFIRF

— TN
Ne—
cl ass20. ppt w

Address Translation via Page Table

virtual address

page table base register

n-1 p p-1 0

VPN acts virtual page number (VPN) page offset

as

table inde valid access physical page number (PPN)

>

If valid=0
then page
not in memory m-1 v p p-1 v o)

physical page number (PPN) page offset

physical address
cl ass20. ppt

Page Table Operation

Translation

e Separate (set of) page table(s) per process
e VPN forms index into page table (points to a page table entry)

Computing Physical Address
e Page Table Entry (PTE) provides information about page
—if (valid bit = 1) then the page is in memory.
» Use physical page number (PPN) to construct address
—if (valid bit = O) then the page is on disk
» Page fault
» Must load page from disk into main memory before continuing

Checking Protection
e Access rights field indicate allowable access
—e.g., read-only, read-write, execute-only
— typically support multiple protection modes (e.g., kernel vs. user)
e Protection violation fault if user doesn have necessary permission

cl ass20. ppt

Integrating VM and Cache

VA | PA miss

Trans- Main
CPU lation Cache Memory

T e ™ 1]

Most Caches “Physically Addressed”
e Accessed by physical addresses
e Allows multiple processes to have blocks in cache at same time
e Allows multiple processes to share pages
e Cache doesnt need to be concerned with protection issues
— Access rights checked as part of address translation

Perform Address Translation Before Cache Lookup
e But this could involve a memory access itself (of the PTE)
e Of course, page table entries can also become cached

cl ass20. ppt

Speeding up Translation with a TLB
“Translation Lookaside Buffer’ (TLB)

e Small hardware cache in MMU
e Maps virtual page numbers to physical page numbers
e Contains complete page table entries for small number of pages

hit
VA PA MmISS _
CPU TL8 Cache Main
Lookup Memory
€ <4—
miss lT hit

Trans-

lation

— data
<

cl ass20. ppt

Address Translation with a TLB

n—L

p p- 0

["virtual page number |page offset]| virtual address)

valid tag physical page number

|)

v
14C)
TLB hit¢ d v
| physical address
tag index
valid tag data
<_
v
>
cache hite—(—— v data

cl ass20. ppt

l byte offset

> TLB

> Cache

Address translation summary

Symbols:

e Components of the virtual address (VA)
—TLBI: TLB index
—TLBT: TLB tag
—VPO: virtual page offset
— VPN: virtual page number

e Components of the physical address (PA)
— PPO: physical page offset (same as VPO)
— PPN: physical page number
— CO: byte offset within cache line
— CI: cache index
— CT: cache tag

cl ass20. ppt

Address translation summary (cont)

Processor:

e execute an instruction to read the word at address VA into a
register.

e send VA to MMU

 MMU:
e receive VA from MMU
e extract TLBI, TLBT, and VPO from VA.
if TLB[TLBI].valid and TLB[TLBIl].tag = TLBT, then TLB hit.
e note: requires no off-chip memory references.
if TLB hit:
—read PPN from TLB line.
—construct PA = PPN+VPO (+ is bit concatenation operator)
—send PA to cache
—note: requires no off-chip memory references

cl ass20. ppt

Address translation summary (cont)

MMU (cont)
e If TLB miss:

—if PTE[VPN].valid, then page table hit.

— if page table hit:
» PPN = PTE[VPN].ppn
»PA = PPN+VPO (+ is bit concatenation operator)
»send PA to cache
»note: requires an off-chip memory reference to the page table.

— if page table miss:
» transfer control to OS via page fault exception.
» OS will load missing page and restart instruction.

Cache:

e receive PA from MMU
e extract CO, CI, and CT from PA
e use CO, CI, and CT to access cache in the normal way.

cl ass20. ppt

Multi-level Page Tables

Given:
e 4KB (2'2?) page size Level 2
e 32-bit address space Tables
e 4-byte PTE

Problem:

= Would need a 4 MB page table Level 1
(220 *4 bytes) per process! Table

Common solution

e multi-level page tables
e e.g., 2-level table (Pentium 11)

— Level 1 table: 1024 entries, each
which points to a Level 2 page

table.

— Level 2 table: 1024 entries, each
of which points to a page

cl ass20. ppt

Pentium 11 Memory System

Virtual address space

e 32 bits (4 GB max)
Page size

e 4 KB (can also be configured for 4 MB)
Instruction TLB

e 32 entries, 4-way set associative.

Data TLB

e 64 entries, 4-way set associative.

L1 instruction cache
e 16 KB, 4-way set associative, 32 B linesize.

L1 data cache

e 16 KB, 4-way set associative, 32 B linesize.

Unified L2 cache

e 512 KB (2 MB max), 4-way set associative, 32 B linesize
cl ass20. ppt

Pentium 11 Page Table Structure

2-level per-process page table:

e 1 Page directory: page
— 1024 entries that point to page tables tables
— must be memory resident while process is running
= 1024 page tables: 1024
— 1024 entries that point to pages. entries
. page
—can be paged in and out. _
directory
CR3 (PDBR) 1024 1024
control register entries entries
1024
entries

cl ass20. ppt

Pentium 11 Page Directory Entry

31 1211 9 8 7 6 5 4 3 2 1 0
page table base addr Avail G|PS| O | A |CD|WT|U/SR/WM P

Avail: available for system programmers

G: global page (dont evict from TLB)

PS: page size (O -> 4K)

A: accessed (set by MMU on reads and writes)
CD: cache disabled

WT: write-through

U/S: user/supervisor

R/W: read/write

P: present

cl ass20. ppt

Pentium Il Page Table Entry

31 1211 9 8 4 3 2 1 O
page base address Avail G CD |WT|U/SR/WP=1
Avail: available for system programmers
G: global page (dont evict from TLB)
D: dirty (set by MMU on writes)
A: accessed (set by MMU on reads and writes)
CD: cache disabled
WT: write-through
U/S: user/supervisor
R/W: read/write
P: present
31 1 0
Available for OS P=0

cl ass20. ppt

Main Themes

Programmer3’ View
e Large “flat’” address space
— Can allocate large blocks of contiguous addresses
e Processor ‘owns’ machine
— Has private address space
— Unaffected by behavior of other processes

System View

e User virtual address space created by mapping to set of pages
— Need not be contiguous
— Allocated dynamically
— Enforce protection during address translation

e OS manages many processes simultaneously
— Continually switching among processes
— Especially when one must wait for resource

» E.g., disk 1/0 to handle page fault

cl ass20. ppt

