
Virtual Memory
March 23, 2000

Topics
• Motivations for VM
• Address translation
• Accelerating address translation with TLBs
• Pentium II/III memory system

15-213

class20.ppt

CS 213 S’00– 2 –class20.ppt

Motivation #1: DRAM a “Cache” for Disk
The full address space is quite large:

• 32-bit addresses: ~4,000,000,000 (4 billion) bytes
• 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

Disk storage is ~30X cheaper than DRAM storage
• 8 GB of DRAM: ~$12,000
• 8 GB of disk: ~$400

To access large amounts of data in a cost-effective
manner, the bulk of the data must be stored on disk

256 MB: ~$400 8 GB: ~$400
4 MB: ~$400

DiskDRAMSRAM

CS 213 S’00– 3 –class20.ppt

Levels in Memory Hierarchy

CPUCPU
regsregs

C
a
c
h
e

MemoryMemory diskdisk

size:
speed:
$/Mbyte:
line size:

32 B
2 ns

8 B

Register Cache Memory Disk Memory
32 KB-4MB
4 ns
$100/MB
32 B

128 MB
60 ns
$1.50/MB
4 KB

20 GB
8 ms
$0.05/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory

CS 213 S’00– 4 –class20.ppt

DRAM vs. SRAM as a “Cache”
DRAM vs. disk is more extreme than SRAM vs. DRAM

• access latencies:
– DRAM is ~10X slower than SRAM
– disk is ~100,000X slower than DRAM

• importance of exploiting spatial locality:
– first byte is ~100,000X slower than successive bytes on disk

» vs. ~4X improvement for page-mode vs. regular accesses to DRAM
• Bottom line:

– design of DRAM caches driven by enormous cost of misses

DRAMSRAM Disk

CS 213 S’00– 5 –class20.ppt

Impact of These Properties on Design
If DRAM was to be organized similar to an SRAM
cache, how would we set the following design
parameters?
• Line size?

• Associativity?

• Replacement policy (if associative)?

• Write through or write back?

What would the impact of these choices be on:
• miss rate
• hit time
• miss latency
• tag overhead

CS 213 S’00– 6 –class20.ppt

Locating an Object in a “Cache”
1. Search for matching tag

• SRAM cache

X
Object Name

2. Use indirection to look up actual object location
• DRAM cache

Data
243
17

105

•••

0:
1:

N-1:

X
Object Name

Location

•••

D:
J:

X: 1

0
N-1

Tag Data
D 243
X 17

J 105

•••
•••

0:
1:

N-1:

= X?

“Cache”

“Cache”Lookup Table

CS 213 S’00– 7 –class20.ppt

CPU

0:
1:

N-1:

Memory

A System with Physical Memory Only
Examples:

• most Cray machines, early PCs, nearly all embedded systems, etc.

Addresses generated by the CPU point directly to bytes in physical
memory

Physical
Addresses

CS 213 S’00– 8 –class20.ppt

A System with Virtual Memory
Examples:

• workstations, servers, modern PCs, etc.

Address Translation: the hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses Physical

Addresses

CS 213 S’00– 9 –class20.ppt

Page Faults (Similar to “Cache Misses”)
What if an object is on disk rather than in memory?

• Page table entry indicates that the virtual address is not in memory
• An OS exception handler is invoked, moving data from disk into

memory
– current process suspends, others can resume
– OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses Physical

Addresses

Before fault After fault

CS 213 S’00– 10 –class20.ppt

Servicing a Page Fault
Processor Signals
Controller
• Read block of length P

starting at disk address X
and store starting at
memory address Y

Read Occurs
• Direct Memory Access

(DMA)
• Under control of I/O

controller
I/O Controller Signals
Completion
• Interrupt processor
• OS resumes suspended

process

diskDis
k

diskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller
I/O

controller

Reg

(2) DMA Transfer

(1) Initiate Block Read

(3) Read
Done

CS 213 S’00– 11 –class20.ppt

Motivation #2: Memory Management
Multiple processes can reside in physical memory.
How do we resolve address conflicts?

• what if two processes access something at the same address?

kernel virtual memory

Memory mapped region
forshared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)
uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to
user code

the “brk” ptr

Linux/x86
process
memory
image

CS 213 S’00– 12 –class20.ppt

Virtual
Address
Space for
Process 1:

Physical
Addres
s
Space
(DRAM)

VP 1
VP 2

PP 2
Address
Translation

0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

Solution: Separate Virtual Addr. Spaces
• Virtual and physical address spaces divided into equal-sized blocks

– blocks are called “pages” (both virtual and physical)
• Each process has its own virtual address space

– operating system controls how virtual pages as assigned to physical
memory

...

...
Virtual
Address
Space for
Process 2:

CS 213 S’00– 13 –class20.ppt

Contrast: (Old) Macintosh Memory Model
Does not use traditional virtual memory

All program objects accessed through “handles”
• indirect reference through pointer table
• objects stored in shared global address space

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

“Handles”

CS 213 S’00– 14 –class20.ppt

(Old) Macintosh Memory Management
Allocation / Deallocation

• Similar to free-list management of malloc/free
Compaction

• Can move any object and just update the (unique) pointer in
pointer table

“Handles”

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

CS 213 S’00– 15 –class20.ppt

(Old) Mac vs. VM-Based Memory Mgmt
Allocating, deallocating, and moving memory:

• can be accomplished by both techniques
Block sizes:

• Mac: variable-sized
– may be very small or very large

• VM: fixed-size
– size is equal to one page (4KB on x86 Linux systems)

Allocating contiguous chunks of memory:
• Mac: contiguous allocation is required
• VM: can map contiguous range of virtual addresses to disjoint

ranges of physical addresses
Protection?

• Mac: “wild write” by one process can corrupt another’s data

CS 213 S’00– 16 –class20.ppt

Motivation #3: Protection
Page table entry contains access rights information

• hardware enforces this protection (trap into OS if violation
occurs) Page Tables

Process i:

Physical AddrRead? Write?
PP 9Yes No
PP 4Yes Yes

XXXXXXXNo No

VP 0:
VP 1:
VP 2:

•••
•••

•••

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?
PP 6Yes Yes
PP 9Yes No

XXXXXXXNo No
•••

•••
•••

VP 0:
VP 1:
VP 2:

CS 213 S’00– 17 –class20.ppt

Summary: Motivations for VM
• Uses physical DRAM memory as a cache for the disk

• address space of a process can exceed physical memory size
• sum of address spaces of multiple processes can exceed physical

memory
• Simplifies memory management

• Can have multiple processes resident in main memory.
• Each process has its own address space (0, 1, 2, 3, …, n-1)
• Only “active” code and data is actually in memory
• Can easily allocate more memory to process as needed.

– external fragmentation problem nonexistent
• Provides protection

• One process can’t interfere with another.
– because they operate in different address spaces.

• User process cannot access privileged information
– different sections of address spaces have different permissions.

CS 213 S’00– 18 –class20.ppt

VM Address Translation
V = {0, 1, . . . , N–1} virtual address space
P = {0, 1, . . . , M–1} physical address space
MAP: V → P U {∅ } address mapping function

N > M

MAP(a) = a' if data at virtual address a is present at physical
address a' in P

= ∅ if data at virtual address a is not present in P

Processor
Hardware

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memorya

a'

∅

page fault

physical address OS performs
this transfer
(only if miss)

virtual address part of the
on-chip
memory mgmt unit (MMU)

CS 213 S’00– 19 –class20.ppt

virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Notice that the page offset bits don't change as a result of translation

VM Address Translation
Parameters

• P = 2p = page size (bytes).
• N = 2n = Virtual address limit
• M = 2m = Physical address limit

CS 213 S’00– 20 –class20.ppt

Page Tables
Memory resident

page table
(physical page
or disk address) Physical Memory

Disk Storage
(swap file or
regular file system file)

Valid
1
1

1
1
1

1

1
0

0

0

Virtual Page
Number

CS 213 S’00– 21 –class20.ppt

Address Translation via Page Table

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page number (PPN)access

VPN acts
as
table index

CS 213 S’00– 22 –class20.ppt

Page Table Operation
Translation

• Separate (set of) page table(s) per process
• VPN forms index into page table (points to a page table entry)

Computing Physical Address
• Page Table Entry (PTE) provides information about page

– if (valid bit = 1) then the page is in memory.
» Use physical page number (PPN) to construct address

– if (valid bit = 0) then the page is on disk
» Page fault
» Must load page from disk into main memory before continuing

Checking Protection
• Access rights field indicate allowable access

– e.g., read-only, read-write, execute-only
– typically support multiple protection modes (e.g., kernel vs. user)

• Protection violation fault if user doesn’t have necessary permission

CS 213 S’00– 23 –class20.ppt

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

Integrating VM and Cache

Most Caches “Physically Addressed”
• Accessed by physical addresses
• Allows multiple processes to have blocks in cache at same time
• Allows multiple processes to share pages
• Cache doesn’t need to be concerned with protection issues

– Access rights checked as part of address translation
Perform Address Translation Before Cache Lookup

• But this could involve a memory access itself (of the PTE)
• Of course, page table entries can also become cached

CS 213 S’00– 24 –class20.ppt

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Speeding up Translation with a TLB
“Translation Lookaside Buffer” (TLB)

• Small hardware cache in MMU
• Maps virtual page numbers to physical page numbers
• Contains complete page table entries for small number of pages

CS 213 S’00– 25 –class20.ppt

Address Translation with a TLB
virtual addressvirtual page number page offset

physical address

n–1 0p–1p

valid physical page numbertag

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit

TLB

Cache

. ..

CS 213 S’00– 26 –class20.ppt

Address translation summary
Symbols:

• Components of the virtual address (VA)
– TLBI: TLB index
– TLBT: TLB tag
– VPO: virtual page offset
– VPN: virtual page number

• Components of the physical address (PA)
– PPO: physical page offset (same as VPO)
– PPN: physical page number
– CO: byte offset within cache line
– CI: cache index
– CT: cache tag

CS 213 S’00– 27 –class20.ppt

Address translation summary (cont)
Processor:

• execute an instruction to read the word at address VA into a
register.

• send VA to MMU
• MMU:

• receive VA from MMU
• extract TLBI, TLBT, and VPO from VA.
• if TLB[TLBI].valid and TLB[TLBI].tag = TLBT, then TLB hit.
• note: requires no off-chip memory references.
• if TLB hit:

– read PPN from TLB line.
– construct PA = PPN+VPO (+ is bit concatenation operator)
– send PA to cache
– note: requires no off-chip memory references

CS 213 S’00– 28 –class20.ppt

Address translation summary (cont)
MMU (cont)

• if TLB miss:
– if PTE[VPN].valid, then page table hit.
– if page table hit:

» PPN = PTE[VPN].ppn
» PA = PPN+VPO (+ is bit concatenation operator)
» send PA to cache
» note: requires an off-chip memory reference to the page table.

– if page table miss:
» transfer control to OS via page fault exception.
» OS will load missing page and restart instruction.

Cache:
• receive PA from MMU
• extract CO, CI, and CT from PA
• use CO, CI, and CT to access cache in the normal way.

CS 213 S’00– 29 –class20.ppt

Multi-level Page Tables
Given:

• 4KB (212) page size
• 32-bit address space
• 4-byte PTE

Problem:
• Would need a 4 MB page table

(220 *4 bytes) per process!
Common solution

• multi-level page tables
• e.g., 2-level table (Pentium II)

– Level 1 table: 1024 entries, each
which points to a Level 2 page
table.

– Level 2 table: 1024 entries, each
of which points to a page

Level 1
Table

...

Level 2
Tables

CS 213 S’00– 30 –class20.ppt

Pentium II Memory System
Virtual address space

• 32 bits (4 GB max)
Page size

• 4 KB (can also be configured for 4 MB)
Instruction TLB

• 32 entries, 4-way set associative.
Data TLB

• 64 entries, 4-way set associative.
L1 instruction cache

• 16 KB, 4-way set associative, 32 B linesize.
L1 data cache

• 16 KB, 4-way set associative, 32 B linesize.
Unified L2 cache

• 512 KB (2 MB max), 4-way set associative, 32 B linesize

CS 213 S’00– 31 –class20.ppt

Pentium II Page Table Structure
2-level per-process page table:

• 1 Page directory:
– 1024 entries that point to page tables
– must be memory resident while process is running

• 1024 page tables:
– 1024 entries that point to pages.
– can be paged in and out. page

directory

1024
entries

1024
entries

1024
entries

1024
entries

...

page
tables

CR3 (PDBR)
control register

CS 213 S’00– 32 –class20.ppt

Pentium II Page Directory Entry

page table base addr Avail G PS 0 A CD WT U/SR/W P

Avail: available for system programmers
G: global page (don’t evict from TLB)
PS: page size (0 -> 4K)
A: accessed (set by MMU on reads and writes)
CD: cache disabled
WT: write-through
U/S: user/supervisor
R/W: read/write
P: present

31 1211 9 8 7 6 5 4 3 2 1 0

CS 213 S’00– 33 –class20.ppt

Pentium II Page Table Entry

page base address Avail G 0 D A CD WT U/SR/WP=1

Avail: available for system programmers
G: global page (don’t evict from TLB)
D: dirty (set by MMU on writes)
A: accessed (set by MMU on reads and writes)
CD: cache disabled
WT: write-through
U/S: user/supervisor
R/W: read/write
P: present

31 1211 9 8 7 6 5 4 3 2 1 0

Available for OS P=0
31 01

CS 213 S’00– 34 –class20.ppt

Main Themes
Programmer’s View

• Large “flat” address space
– Can allocate large blocks of contiguous addresses

• Processor “owns” machine
– Has private address space
– Unaffected by behavior of other processes

System View
• User virtual address space created by mapping to set of pages

– Need not be contiguous
– Allocated dynamically
– Enforce protection during address translation

• OS manages many processes simultaneously
– Continually switching among processes
– Especially when one must wait for resource

» E.g., disk I/O to handle page fault

