15-213 Computer System

Caches Processor interrupt
March 16, 2000

Topics
= Memory Hierarchy
« Locality of Reference

« Cache Design
- Direct Mapped Memory I

— Associative

Memory-1/0 bus i

cl ass18.ppt cl ass18.ppt —2- CS 213 SO0

Levels in Memory Hierarchy Alpha 21164 Chip Photo
cache virtual memory Microprocessor
< > < > Report 9/12/94
Caches:
c
cru |88 |a| 328 f\emory|l8Ke L1 data
ﬁ L1 instruction
e L2 unified
TLB
Register Cache Memory Disk Memory Branch history
size: 200 B 32KB - 4MB 128 MB 20 GB
speed: 2ns 4ns 60 ns 8 ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 32B 8 KB
larger, slower, cheaper L
larger, slower, cheap >
cl ass18.ppt _3_ €S 213 SO class18.ppt e —4- CS 213 SO0

Page 1

Alpha 21164 Chip Caches

L3 Control
Right Half
Caches: L2
L1 data
L1 instruction
L2 unified
TLB i
) Data
Branch history L1
1
n
S
t
r.
Right Half
L2 L2
Tags
cl ass18.ppt

Caching: The Basic ldea

Main Memory
* Stores words
A-Z in example
Cache

« Stores subset of the
words

4 in example
« Organized in lines
— Multiple words
—To exploit spatial
locality
Access

* Word must be in cache
for processor to access

cl ass18.ppt

Big, Slow Memory

Small,
Fast Cache
Processor A
B
<>
G
H

N|=<]o o oJO|m[>

Page 2

Locality of Reference

Principle of Locality:

* Programs tend to reuse data and instructions near those they
have used recently.

« Temporal locality: recently referenced items are likely to be
referenced in the near future.

« Spatial locality: items with nearby addresses tend to be
referenced close together in time.

sum = 0;
for (i =0; i <n; i+4)
. . sum += ali];
Locality in Example: *v = sum
« Data
—Reference array elements in succession
(spatial)

= Instructions
—Reference instructions in sequence (spatial)
—Cycle through loop repeatedly (temporal)

cl ass18.ppt _6-
Basic ldea (Cont.)
Initia Read C Read D Read Z
A A A Y
B B B z
G C C C
H D D D
Cache holds 2 Load line C+D Word already Load line Y+Z
lines into cache in cache into cache
Each with 2 “Cache miss” “Cache hit” Evict oldest
words entry

Maintaining Cache:

« Each time the processor performs a load or store, bring line
containing the word into the cache

—May need to evict existing line
« Subsequent loads or stores to any word in line performed within
cache

cl ass18.ppt

Accessing Data in Memory Hierarchy

« Between any two levels, memory is divided into lines (aka “blocks™)
« Data moves between levels on demand, in line-sized chunks.
< Invisible to application programmer
—Hardware responsible for cache operation
« Upper-level lines a subset of lower-level lines.

Access word win line a (hit) Access word V in line b (miss)

w \
High a a a
Level

b

fo
Low b b b
Level a a a
cl ass18.ppt ~—9- CS 213 S0O

Direct-Mapped Caches
Simplest Design
= Each memory line has a unique cache location
Parameters
- Line (aka block) size B = 2°
— Number of bytes in each line
— Typically 2X-8X word size
= Number of Sets S = 2%
— Number of lines cache can hold
« Total Cache Size = B*S = 2b*s
Physical Address t s b
= Address used to reference main memory [] |]
= n bits to reference N = 2" total bytes
= Partition into fields
— Offset: Lower b bits indicate which byte within line
— Set: Next s bits indicate how to locate line within cache
— Tag: Identifies this line when in cache

n-bit Physical Address

tag setindex offset

cl ass18.ppt 11— CS 213 SO0

Page 3

Design Issues for Caches

Key Questions:
* Where should a line be placed in the cache? (line placement)
* How is a line found in the cache? (line identification)
* Which line should be replaced on a miss? (line replacement)
* What happens on a write? (write strategy)
Constraints:
« Design must be very simple
—Hardware realization
— All decision making within nanosecond time scale
* Want to optimize performance for “typical” programs
— Do extensive benchmarking and simulations
—Many subtle engineering tradeoffs

cl ass18.ppt

-10- CS 213 SO0

Indexing into Direct-Mapped Cache

Set 0: [o1]- = <[]
* Use set index bits
to select cache set Set 1: [o] 1]e = <[]

Set 541: (o] = <] |

[| I]
tag setindex offset

Physical Address

cl ass18.ppt

-12- CS 213 SO0

Direct-Mapped Cache Tag Matching

Identifying Line
* Must have tag match high
order bits of address =1?

* Must have Valid = 1 Selected Set:

=2 IEIVand [o] 1]= = <[] |

* Lower bits of address
select byte or word
t s b
[| |]

within cache line
tag setindex offset

Physical Address

cl ass18.ppt ~13- CS 213 S0O

Why Use Middle Bits as Index?

4-line Cache High-Order Middle-Order
Bit Indexing Bit Indexing
00 0000 0000
01 0001 ooc:. [
10 0010 0010
11 0011 0011
High-Order Bit Indexing 0100 0100
- Adjacent memory lines would ~ 0101 o101 [
map to same cache entry 0110 0110
= Poor use of spatial locality 0111 0111
Middle-Order Bit Indexing 1000 1000
- Consecutive memory lines map 1001 1001 [
to different cache lines 1010 1010
« Can hold N-byte region of 1011 1011
address space in cache at one 77p9 1100
time 1101 1101
1110 1110
1111 1111 | |
class18.ppt ~15- CS 213 S00

Page 4

Direct Mapped Cache Simulation

N=16 byte addresses, B=2 bytes/line, S=4 sets, E=1
entry/set
Address trace (reads):

0 [0000] 1 [0001] 13 [1101] 8 [1000] O [0000]
0000 0 [0000] (miss) 13 [1101] (miss)
0001 v tag data v tag data
0010
0011
0100 () @
0101
0110
0111

1000 8 [1000] (miss) 0 [0000] (miss)

1001
1010 v tag data v tag data

1011
1100 @®) @
1101
1110
1111

cl ass18.ppt

t=1 s=2 b=1

14— €S 213 S00

Direct Mapped Cache Implementation
(DECStation 3100)

313029 .. 19181716 151413 ..o 5432 10

byte
offset!

| set

valid tag (16 bits data (32 bits)

16,384 sets

data

cl ass18.ppt ~16— CS 213 SO0

Properties of Direct Mapped Caches

Strength
= Minimal control hardware overhead
= Simple design
= (Relatively) easy to make fast
Weakness
= Vulnerable to thrashing
= Two heavily used lines have same cache index
= Repeatedly evict one to make room for other

Cache Line

I
P

cl ass18.ppt
Thrashing Example

x[0] y[0]

x[1] Cache y[1] Cache

x[2] Line y[2] Line

x[3] y[3]

- Cache - Cache

- : Line - : Line
x[1020] y[1020]
x[1021] Cache y[1021] Cache
x[1022] Line y[1022] Line
x[1023] v y[1023]

« Access one element from each array per iteration

cl ass18.ppt

Page 5

Vector Product Example

float dot_prod(float x[1024], y[1024])
{
float sum = 0.0;
int i;
for (i =0; i < 1024; i++4)
sum += x[i]*y[i];

return sum

Machine
- DECStation 5000

* MIPS Processor with 64KB direct-mapped cache, 16 B line size

Performance

* Good case: 24 cycles / element
« Bad case: 66 cycles / element

cl ass18.ppt

Thrashing Example: Good Case

Cache

Line

x[0] y[0]
x[1] y[1]
x[2] y[2]
x[3] y[3]

Access Sequence
= Read x[0]
—x[0], x[1], x[2], x[3] loaded
= Read y[0]
- [0l y[1], y[2], y[3] loaded
= Read x[1]
— Hit
= Read y[1]
— Hit

« 2 misses / 8 reads

cl ass18.ppt

Analysis

= x[i] and y[i] map to different cache
lines

= Miss rate = 25%
— Two memory accesses / iteration
- On every 4th iteration have two

misses
Timing

= 10 cycle loop time

= 28 cycles / cache miss

= Average time / iteration =
10 + 0.25 * 2 * 28

Thrashing Example: Bad Case

x[0] y[0]
x[1] y[1] Cache
x[2] y[2] Line
x[3] y[3]
Access Pattern Analysis
- Read x[0] = x[i] and y[i] map to same cache
lines
—x[0], x[1], x[2], x[3] loaded « Miss rate = 100%
= Read y[0] — Two memory accesses / iteration
- y[0l. y[1]. y[2], y[3] loaded — On every iteration have two
« Read x[1] misses
- x[0], x[1], x[2], x[3] loaded Timing
= Read y[1] = 10 cycle loop time

= 28 cycles / cache miss
= Average time / iteration =
10 +1.0*2 * 28

- y[0l, y[1], y[2], y[3] loaded

= 8 misses / 8 reads

cl ass18.ppt

Indexing into 2-Way Associative Cache

0]1]|e =[]
* Use middle s bits to Set 0: ol 11 = <2
select from among S = 23 —
sets 0| 1]e o «[B1]
Set 1: 0] 1]|e o[
Tag 0|1]|e « =B
f?t S- Tag 0|1]|e =B
t s b
[| I]
tag setindex offset
Physical Address
cl ass18.ppt

Page 6

Set Associative Cache
Mapping of Memory Lines

« Each set can hold E lines
— Typically between 2 and 8
« Given memory line can map to any entry within its given set

Eviction Policy
« Which line gets kicked out when bring new line in
« Commonly either ‘Least Recently Used” (LRU) or pseudo-random
—LRU: least-recently accessed (read or written) line gets evicted

Line 0: [o]1]e = <[]
Line 1: [o]1]e = <[]

Line E-1: [0 1] « <[]

Set i:

cl ass18.ppt

2-Way Associative Cache Tag Matching

Identifying Line
* Must have one of the
tags match high order =1?
bits of address

* Must have Valid = 1 for Selected Set:

e .
this line . Fao Tvanrd [0]]+ = <2
- M _Tag Jvalid] [0] 1]* = |31
« Lower bits of address
select byte or word
t s b within cache line
[| I]
tag setindex offset
Physical Address
cl ass18.ppt

2-Way Set Associative Simulation

t=2 s=1 b=1 N=16 addresses, B=2 bytes/line, S=2 sets, E=2 entries/set

Address trace (reads):
O T x T x7]
0 [0000] 1 [0001] 13 [1101] 8 [1000] O [0000]

v tag data v tag data
0000

R e e s AL
0010
0011
0100 v tag data v tag data
0101 1 1 L1 1] ;
o0 [T 1 11 | 13 (miss)
0111
1000 v tag data v tag data
1001
w0 - — | sy
1011 (LRU replacement)
1100 v tag data v tag data
1101
[| | | | |] O(miss)

1110 I — 1]
1111 (LRU replacement)

cl ass18.ppt _25- CS 213 SO0

Two-Way Set Associative Cache
Implementation

« Set index selects a set from the cache
* The two tags in the set are compared in parallel
« Data is selected based on the tag result

Set Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Line 0 Cache Line 0

y Cache Line

cl ass18.ppt

_26- €S 213 S00

Fully Associative Cache
Mapping of Memory Lines

« Cache consists of single set holding E lines
« Given memory line can map to any line in set
« Only practical for small caches

Entire Cache

Line 0: [o]1]e = <&
Line 1: [o1]= = <[e4]

Line E-1: [o1]= = <[e4]

cl ass18.ppt 27— CS 213 SO0

Fully Associative Cache Tag Matching

P : =17
Identifying Line

* Must check all of the tags for

match m‘ﬁ] [o]s]- = =[]
* Must have Valid = 1 for this line n“

[o] 1] = <[z

?
« Lower bits of address
select byte or word
t b within cache line
[I]
tag offset

Physical Address

cl ass18.ppt _28- CS 213 SO0

Fully Associative Cache Simulation

N=16 addresses, B=2 bytes/line, S=1 sets, E=4 entries/set
t=3 s=0 p=1 Address trace (reads):
Gox T — T x] 0 [0000] 1 [0001] 13 [1101] 8 [1000] O [0000]

0000 0 (miss) 13 (miss)
0001 v _tag data v _tag data
0010
0011
0100 ®
0101
0110
0111
1882 8 (miss)
1010 v __tag data
1011
1100 (3)
1101
1110
1111

cl ass18.ppt

setg (2)

_29- €S 213 S00

Write Strategies (Cont.)
Write Back:
« Store by processor only updates cache line
* Modified line written to memory only when it is evicted
—Requires “dirty bit” for each line

» Set when line in cache is modified

» Indicates that line in memory is stale
* Memory not always consistent with cache

Write
Processor | Store Back
> > Memory
< Cache |e——
Load Cache
Load

cl ass18.ppt 31— CS 213 SDO

Page 8

Write Policy

* What happens when processor writes to the cache?
* Should memory be updated as well?

Write Through:
« Store by processor updates cache and memory.
* Memory always consistent with cache
* Never need to store from cache to memory
* ~2X more loads than stores

Store
Memory
Processor
< Cache |
Load
Cache
Load
cl ass18.ppt

-30- CS 213 S0O

Multi-Level Caches

Options: separate data and instruction caches, or a unified cache

Memory [——

L1 Irarhnl Cache

Processor

size: 200 B 8-64 KB 1-4MB SRAM 128 MB DRAM 9 GB
speed: 2ns 2 ns 6 ns 60 ns 8ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 32B 32B 8 KB
larger, slower, cheaper
Ll

larger line size, higher associativity, more likely to write back

cl ass18.ppt _32- CS 213 S0O

Alpha 21164 Hierarchy

L1 Data
1 cycle latency
— 8KB, direct . .
R Write-through |€— L2 Unified L3 Unified
€gs. |[«—»| pual Ported 8 cycgle(ygtency 1lc\jl!—GzltM Vi
32B lines Irect ain
3-way assoc. |*T™| Write-back |[*—» Memory
Write-back rite allocate] Up to 2GB
L1 Instruction Write allocate 32B or 64B
8KB, direct |4 32B/648B lines lines
32B lines
Processor Chip

« Improving memory performance was a main design goal
« Earlier Alpha’ CPUs starved for data

cl ass18.ppt

High Bandwidth Memory Systems

CPU CPU

He)

Solution 1 Solution 2
High BW DRAM Wide path between memory & cache

Example: Example: Alpha AXP 21064
Page Mode DRAM 256 bit wide bus, L2 cache,
RAMbus and memory.

cl ass18.ppt

Page 9

Bandwidth Matching
Challenge

* CPU works with short cycle times
* DRAM (relatively) long cycle times

* How can we provide enough bandwidth between
processor & memory?

Effect of Caching

« Caching greatly reduces amount of traffic to main
memory

* But, sometimes need to move large amounts of
data from memory into cache

Short [CPU
Latency

o I
(e}

z |(2 !O
7

Trends Long
* Need for high bandwidth much greater for Latency
multimedia applications

—Repeated operations on image data

* Recent generation machines (e.g., Pentium I11)
greatly improve on predecessors

cl ass18.ppt

Cache Performance Metrics

Miss Rate

« fraction of memory references not found in cache
(misses/references)

« Typical numbers:
3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- time to deliver a line in the cache to the processor (includes time
to determine whether the line is in the cache)

« Typical numbers:
1 clock cycle for L1
3-8 clock cycles for L2

Miss Penalty
« additional time required because of a miss
— Typically 25-100 cycles for main memory

cl ass18.ppt

